File size: 7,283 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
from itertools import product as product
import torch
from torch.autograd import Function
import warnings


def nms_(dets, thresh):
    """
    Courtesy of Ross Girshick
    [https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
    """
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1) * (y2 - y1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(int(i))
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]

    return np.array(keep).astype(np.int32)


def decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        loc (tensor): location predictions for loc layers,
            Shape: [num_priors,4]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded bounding box predictions
    """

    boxes = torch.cat((
        priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
        priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes


def nms(boxes, scores, overlap=0.5, top_k=200):
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
        overlap: (float) The overlap thresh for suppressing unnecessary boxes.
        top_k: (int) The Maximum number of box preds to consider.
    Return:
        The indices of the kept boxes with respect to num_priors.
    """

    keep = scores.new(scores.size(0)).zero_().long()
    if boxes.numel() == 0:
        return keep, 0
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    area = torch.mul(x2 - x1, y2 - y1)
    v, idx = scores.sort(0)  # sort in ascending order
    # I = I[v >= 0.01]
    idx = idx[-top_k:]  # indices of the top-k largest vals
    xx1 = boxes.new()
    yy1 = boxes.new()
    xx2 = boxes.new()
    yy2 = boxes.new()
    w = boxes.new()
    h = boxes.new()

    # keep = torch.Tensor()
    count = 0
    while idx.numel() > 0:
        i = idx[-1]  # index of current largest val
        # keep.append(i)
        keep[count] = i
        count += 1
        if idx.size(0) == 1:
            break
        idx = idx[:-1]  # remove kept element from view
        # load bboxes of next highest vals
        with warnings.catch_warnings():
            # Ignore UserWarning within this block
            warnings.simplefilter("ignore", category=UserWarning)
            torch.index_select(x1, 0, idx, out=xx1)
            torch.index_select(y1, 0, idx, out=yy1)
            torch.index_select(x2, 0, idx, out=xx2)
            torch.index_select(y2, 0, idx, out=yy2)
        # store element-wise max with next highest score
        xx1 = torch.clamp(xx1, min=x1[i])
        yy1 = torch.clamp(yy1, min=y1[i])
        xx2 = torch.clamp(xx2, max=x2[i])
        yy2 = torch.clamp(yy2, max=y2[i])
        w.resize_as_(xx2)
        h.resize_as_(yy2)
        w = xx2 - xx1
        h = yy2 - yy1
        # check sizes of xx1 and xx2.. after each iteration
        w = torch.clamp(w, min=0.0)
        h = torch.clamp(h, min=0.0)
        inter = w * h
        # IoU = i / (area(a) + area(b) - i)
        rem_areas = torch.index_select(area, 0, idx)  # load remaining areas)
        union = (rem_areas - inter) + area[i]
        IoU = inter / union  # store result in iou
        # keep only elements with an IoU <= overlap
        idx = idx[IoU.le(overlap)]
    return keep, count


class Detect(object):

    def __init__(self, num_classes=2,
                    top_k=750, nms_thresh=0.3, conf_thresh=0.05,
                    variance=[0.1, 0.2], nms_top_k=5000):
        
        self.num_classes = num_classes
        self.top_k = top_k
        self.nms_thresh = nms_thresh
        self.conf_thresh = conf_thresh
        self.variance = variance
        self.nms_top_k = nms_top_k

    def forward(self, loc_data, conf_data, prior_data):

        num = loc_data.size(0)
        num_priors = prior_data.size(0)

        conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
        batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
        batch_priors = batch_priors.contiguous().view(-1, 4)

        decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
        decoded_boxes = decoded_boxes.view(num, num_priors, 4)

        output = torch.zeros(num, self.num_classes, self.top_k, 5)

        for i in range(num):
            boxes = decoded_boxes[i].clone()
            conf_scores = conf_preds[i].clone()

            for cl in range(1, self.num_classes):
                c_mask = conf_scores[cl].gt(self.conf_thresh)
                scores = conf_scores[cl][c_mask]
                
                if scores.dim() == 0:
                    continue
                l_mask = c_mask.unsqueeze(1).expand_as(boxes)
                boxes_ = boxes[l_mask].view(-1, 4)
                ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
                count = count if count < self.top_k else self.top_k

                output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)

        return output


class PriorBox(object):

    def __init__(self, input_size, feature_maps,
                    variance=[0.1, 0.2],
                    min_sizes=[16, 32, 64, 128, 256, 512],
                    steps=[4, 8, 16, 32, 64, 128],
                    clip=False):

        super(PriorBox, self).__init__()

        self.imh = input_size[0]
        self.imw = input_size[1]
        self.feature_maps = feature_maps

        self.variance = variance
        self.min_sizes = min_sizes
        self.steps = steps
        self.clip = clip

    def forward(self):
        mean = []
        for k, fmap in enumerate(self.feature_maps):
            feath = fmap[0]
            featw = fmap[1]
            for i, j in product(range(feath), range(featw)):
                f_kw = self.imw / self.steps[k]
                f_kh = self.imh / self.steps[k]

                cx = (j + 0.5) / f_kw
                cy = (i + 0.5) / f_kh

                s_kw = self.min_sizes[k] / self.imw
                s_kh = self.min_sizes[k] / self.imh

                mean += [cx, cy, s_kw, s_kh]

        output = torch.FloatTensor(mean).view(-1, 4)
        
        if self.clip:
            output.clamp_(max=1, min=0)
        
        return output