Spaces:
Runtime error
Runtime error
================================ | |
开源指令微调数据集(LLM) | |
================================ | |
HuggingFace Hub 中有众多优秀的开源数据,本节将以 | |
`timdettmers/openassistant-guanaco <https://huggingface.co/datasets/timdettmers/openassistant-guanaco>`__ | |
开源指令微调数据集为例,讲解如何开始训练。为便于介绍,本节以 | |
`internlm2_chat_7b_qlora_oasst1_e3 <https://github.com/InternLM/xtuner/blob/main/xtuner/configs/internlm/internlm2_chat_7b/internlm2_chat_7b_qlora_oasst1_e3.py>`__ | |
配置文件为基础进行讲解。 | |
适配开源数据集 | |
===================== | |
不同的开源数据集有不同的数据「载入方式」和「字段格式」,因此我们需要针对所使用的开源数据集进行一些适配。 | |
载入方式 | |
----------- | |
XTuner 使用上游库 ``datasets`` 的统一载入接口 ``load_dataset``\ 。 | |
.. code:: python | |
data_path = 'timdettmers/openassistant-guanaco' | |
train_dataset = dict( | |
type=process_hf_dataset, | |
dataset=dict(type=load_dataset, path=data_path), | |
...) | |
.. tip:: | |
一般来说,若想要使用不同的开源数据集,用户只需修改 | |
``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``path`` | |
参数即可。 | |
若想使用 openMind 数据集,可将 ``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``type`` 替换为 ``openmind.OmDataset``。 | |
字段格式 | |
-------- | |
为适配不同的开源数据集的字段格式,XTuner 开发并设计了一套 ``map_fn`` 机制,可以把不同的开源数据集转为统一的字段格式 | |
.. code:: python | |
from xtuner.dataset.map_fns import oasst1_map_fn | |
train_dataset = dict( | |
type=process_hf_dataset, | |
... | |
dataset_map_fn=oasst1_map_fn, | |
...) | |
XTuner 内置了众多 map_fn | |
(\ `这里 <https://github.com/InternLM/xtuner/tree/main/xtuner/dataset/map_fns/dataset_map_fns>`__\ ),可以满足大多数开源数据集的需要。此处我们罗列一些常用 | |
map_fn 及其对应的原始字段和参考数据集: | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| map_fn | Columns | Reference Datasets | | |
+====================================================================================================================================+===================================================+=======================================================================================================================+ | |
| `alpaca_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/alpaca_map_fn.py>`__ | ['instruction', 'input', 'output', ...] | `tatsu-lab/alpaca <https://huggingface.co/datasets/tatsu-lab/alpaca>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `alpaca_zh_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/alpaca_zh_map_fn.py>`__ | ['instruction_zh', 'input_zh', 'output_zh', ...] | `silk-road/alpaca-data-gpt4-chinese <https://huggingface.co/datasets/silk-road/alpaca-data-gpt4-chinese>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `oasst1_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/oasst1_map_fn.py>`__ | ['text', ...] | `timdettmers/openassistant-guanaco <https://huggingface.co/datasets/timdettmers/openassistant-guanaco>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `openai_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/openai_map_fn.py>`__ | ['messages', ...] | `DavidLanz/fine_tuning_datraset_4_openai <https://huggingface.co/datasets/DavidLanz/fine_tuning_datraset_4_openai>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `code_alpaca_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/code_alpaca_map_fn.py>`__ | ['prompt', 'completion', ...] | `HuggingFaceH4/CodeAlpaca_20K <https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `medical_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/medical_map_fn.py>`__ | ['instruction', 'input', 'output', ...] | `shibing624/medical <https://huggingface.co/datasets/shibing624/medical>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `tiny_codes_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/tiny_codes_map_fn.py>`__ | ['prompt', 'response', ...] | `nampdn-ai/tiny-codes <https://huggingface.co/datasets/nampdn-ai/tiny-codes>`__ | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| `default_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/default_map_fn.py>`__ | ['input', 'output', ...] | / | | |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
例如,针对 ``timdettmers/openassistant-guanaco`` 数据集,XTuner 内置了 | |
``oasst1_map_fn``\ ,以对其进行字段格式统一。具体实现如下: | |
.. code:: python | |
def oasst1_map_fn(example): | |
r"""Example before preprocessing: | |
example['text'] = ('### Human: Can you explain xxx' | |
'### Assistant: Sure! xxx' | |
'### Human: I didn't understand how xxx' | |
'### Assistant: It has to do with a process xxx.') | |
Example after preprocessing: | |
example['conversation'] = [ | |
{ | |
'input': 'Can you explain xxx', | |
'output': 'Sure! xxx' | |
}, | |
{ | |
'input': 'I didn't understand how xxx', | |
'output': 'It has to do with a process xxx.' | |
} | |
] | |
""" | |
data = [] | |
for sentence in example['text'].strip().split('###'): | |
sentence = sentence.strip() | |
if sentence[:6] == 'Human:': | |
data.append(sentence[6:].strip()) | |
elif sentence[:10] == 'Assistant:': | |
data.append(sentence[10:].strip()) | |
if len(data) % 2: | |
# The last round of conversation solely consists of input | |
# without any output. | |
# Discard the input part of the last round, as this part is ignored in | |
# the loss calculation. | |
data.pop() | |
conversation = [] | |
for i in range(0, len(data), 2): | |
single_turn_conversation = {'input': data[i], 'output': data[i + 1]} | |
conversation.append(single_turn_conversation) | |
return {'conversation': conversation} | |
通过代码可以看到,\ ``oasst1_map_fn`` 对原数据中的 ``text`` | |
字段进行处理,进而构造了一个 ``conversation`` | |
字段,以此确保了后续数据处理流程的统一。 | |
值得注意的是,如果部分开源数据集依赖特殊的 | |
map_fn,则需要用户自行参照以提供的 map_fn | |
进行自定义开发,实现字段格式的对齐。 | |
训练 | |
===== | |
用户可以使用 ``xtuner train`` 启动训练。假设所使用的配置文件路径为 | |
``./config.py``\ ,并使用 DeepSpeed ZeRO-2 优化。 | |
单机单卡 | |
-------- | |
.. code:: console | |
$ xtuner train ./config.py --deepspeed deepspeed_zero2 | |
单机多卡 | |
-------- | |
.. code:: console | |
$ NPROC_PER_NODE=${GPU_NUM} xtuner train ./config.py --deepspeed deepspeed_zero2 | |
多机多卡(以 2 \* 8 GPUs 为例) | |
-------------------------------------- | |
**方法 1:torchrun** | |
.. code:: console | |
$ # excuete on node 0 | |
$ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=0 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2 | |
$ # excuete on node 1 | |
$ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=1 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2 | |
.. note:: | |
\ ``$PORT`` 表示通信端口、\ ``$NODE_0_ADDR`` 表示 node 0 的 IP 地址。 | |
二者并不是系统自带的环境变量,需要根据实际情况,替换为实际使用的值 | |
**方法 2:slurm** | |
.. code:: console | |
$ srun -p $PARTITION --nodes=2 --gres=gpu:8 --ntasks-per-node=8 xtuner train internlm2_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2 | |
模型转换 | |
========= | |
模型训练后会自动保存成 PTH 模型(例如 ``iter_500.pth``\ ),我们需要利用 | |
``xtuner convert pth_to_hf`` 将其转换为 HuggingFace | |
模型,以便于后续使用。具体命令为: | |
.. code:: console | |
$ xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH} | |
$ # 例如:xtuner convert pth_to_hf ./config.py ./iter_500.pth ./iter_500_hf | |
.. _模型合并可选): | |
模型合并(可选) | |
================ | |
如果您使用了 LoRA / QLoRA 微调,则模型转换后将得到 adapter | |
参数,而并不包含原 LLM | |
参数。如果您期望获得合并后的模型权重,那么可以利用 | |
``xtuner convert merge`` : | |
.. code:: console | |
$ xtuner convert merge ${LLM} ${ADAPTER_PATH} ${SAVE_PATH} | |
$ # 例如:xtuner convert merge internlm/internlm2-chat-7b ./iter_500_hf ./iter_500_merged_llm | |
对话 | |
===== | |
用户可以利用 ``xtuner chat`` 实现与微调后的模型对话: | |
.. code:: console | |
$ xtuner chat ${NAME_OR_PATH_TO_LLM} --adapter ${NAME_OR_PATH_TO_ADAPTER} --prompt-template ${PROMPT_TEMPLATE} [optional arguments] | |
.. tip:: | |
例如: | |
.. code:: console | |
$ xtuner chat internlm2/internlm2-chat-7b --adapter ./iter_500_hf --prompt-template internlm2_chat | |
$ xtuner chat ./iter_500_merged_llm --prompt-template internlm2_chat | |