internLMRAG / data /xtuner /docs /zh_cn /training /open_source_dataset.rst
cloneQ's picture
Upload 927 files
8f8a944 verified
================================
开源指令微调数据集(LLM)
================================
HuggingFace Hub 中有众多优秀的开源数据,本节将以
`timdettmers/openassistant-guanaco <https://huggingface.co/datasets/timdettmers/openassistant-guanaco>`__
开源指令微调数据集为例,讲解如何开始训练。为便于介绍,本节以
`internlm2_chat_7b_qlora_oasst1_e3 <https://github.com/InternLM/xtuner/blob/main/xtuner/configs/internlm/internlm2_chat_7b/internlm2_chat_7b_qlora_oasst1_e3.py>`__
配置文件为基础进行讲解。
适配开源数据集
=====================
不同的开源数据集有不同的数据「载入方式」和「字段格式」,因此我们需要针对所使用的开源数据集进行一些适配。
载入方式
-----------
XTuner 使用上游库 ``datasets`` 的统一载入接口 ``load_dataset``\ 。
.. code:: python
data_path = 'timdettmers/openassistant-guanaco'
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path=data_path),
...)
.. tip::
一般来说,若想要使用不同的开源数据集,用户只需修改
``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``path``
参数即可。
若想使用 openMind 数据集,可将 ``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``type`` 替换为 ``openmind.OmDataset``。
字段格式
--------
为适配不同的开源数据集的字段格式,XTuner 开发并设计了一套 ``map_fn`` 机制,可以把不同的开源数据集转为统一的字段格式
.. code:: python
from xtuner.dataset.map_fns import oasst1_map_fn
train_dataset = dict(
type=process_hf_dataset,
...
dataset_map_fn=oasst1_map_fn,
...)
XTuner 内置了众多 map_fn
(\ `这里 <https://github.com/InternLM/xtuner/tree/main/xtuner/dataset/map_fns/dataset_map_fns>`__\ ),可以满足大多数开源数据集的需要。此处我们罗列一些常用
map_fn 及其对应的原始字段和参考数据集:
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| map_fn | Columns | Reference Datasets |
+====================================================================================================================================+===================================================+=======================================================================================================================+
| `alpaca_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/alpaca_map_fn.py>`__ | ['instruction', 'input', 'output', ...] | `tatsu-lab/alpaca <https://huggingface.co/datasets/tatsu-lab/alpaca>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `alpaca_zh_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/alpaca_zh_map_fn.py>`__ | ['instruction_zh', 'input_zh', 'output_zh', ...] | `silk-road/alpaca-data-gpt4-chinese <https://huggingface.co/datasets/silk-road/alpaca-data-gpt4-chinese>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `oasst1_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/oasst1_map_fn.py>`__ | ['text', ...] | `timdettmers/openassistant-guanaco <https://huggingface.co/datasets/timdettmers/openassistant-guanaco>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `openai_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/openai_map_fn.py>`__ | ['messages', ...] | `DavidLanz/fine_tuning_datraset_4_openai <https://huggingface.co/datasets/DavidLanz/fine_tuning_datraset_4_openai>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `code_alpaca_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/code_alpaca_map_fn.py>`__ | ['prompt', 'completion', ...] | `HuggingFaceH4/CodeAlpaca_20K <https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `medical_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/medical_map_fn.py>`__ | ['instruction', 'input', 'output', ...] | `shibing624/medical <https://huggingface.co/datasets/shibing624/medical>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `tiny_codes_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/tiny_codes_map_fn.py>`__ | ['prompt', 'response', ...] | `nampdn-ai/tiny-codes <https://huggingface.co/datasets/nampdn-ai/tiny-codes>`__ |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| `default_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/default_map_fn.py>`__ | ['input', 'output', ...] | / |
+------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
例如,针对 ``timdettmers/openassistant-guanaco`` 数据集,XTuner 内置了
``oasst1_map_fn``\ ,以对其进行字段格式统一。具体实现如下:
.. code:: python
def oasst1_map_fn(example):
r"""Example before preprocessing:
example['text'] = ('### Human: Can you explain xxx'
'### Assistant: Sure! xxx'
'### Human: I didn't understand how xxx'
'### Assistant: It has to do with a process xxx.')
Example after preprocessing:
example['conversation'] = [
{
'input': 'Can you explain xxx',
'output': 'Sure! xxx'
},
{
'input': 'I didn't understand how xxx',
'output': 'It has to do with a process xxx.'
}
]
"""
data = []
for sentence in example['text'].strip().split('###'):
sentence = sentence.strip()
if sentence[:6] == 'Human:':
data.append(sentence[6:].strip())
elif sentence[:10] == 'Assistant:':
data.append(sentence[10:].strip())
if len(data) % 2:
# The last round of conversation solely consists of input
# without any output.
# Discard the input part of the last round, as this part is ignored in
# the loss calculation.
data.pop()
conversation = []
for i in range(0, len(data), 2):
single_turn_conversation = {'input': data[i], 'output': data[i + 1]}
conversation.append(single_turn_conversation)
return {'conversation': conversation}
通过代码可以看到,\ ``oasst1_map_fn`` 对原数据中的 ``text``
字段进行处理,进而构造了一个 ``conversation``
字段,以此确保了后续数据处理流程的统一。
值得注意的是,如果部分开源数据集依赖特殊的
map_fn,则需要用户自行参照以提供的 map_fn
进行自定义开发,实现字段格式的对齐。
训练
=====
用户可以使用 ``xtuner train`` 启动训练。假设所使用的配置文件路径为
``./config.py``\ ,并使用 DeepSpeed ZeRO-2 优化。
单机单卡
--------
.. code:: console
$ xtuner train ./config.py --deepspeed deepspeed_zero2
单机多卡
--------
.. code:: console
$ NPROC_PER_NODE=${GPU_NUM} xtuner train ./config.py --deepspeed deepspeed_zero2
多机多卡(以 2 \* 8 GPUs 为例)
--------------------------------------
**方法 1:torchrun**
.. code:: console
$ # excuete on node 0
$ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=0 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2
$ # excuete on node 1
$ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=1 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2
.. note::
\ ``$PORT`` 表示通信端口、\ ``$NODE_0_ADDR`` 表示 node 0 的 IP 地址。
二者并不是系统自带的环境变量,需要根据实际情况,替换为实际使用的值
**方法 2:slurm**
.. code:: console
$ srun -p $PARTITION --nodes=2 --gres=gpu:8 --ntasks-per-node=8 xtuner train internlm2_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2
模型转换
=========
模型训练后会自动保存成 PTH 模型(例如 ``iter_500.pth``\ ),我们需要利用
``xtuner convert pth_to_hf`` 将其转换为 HuggingFace
模型,以便于后续使用。具体命令为:
.. code:: console
$ xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}
$ # 例如:xtuner convert pth_to_hf ./config.py ./iter_500.pth ./iter_500_hf
.. _模型合并可选):
模型合并(可选)
================
如果您使用了 LoRA / QLoRA 微调,则模型转换后将得到 adapter
参数,而并不包含原 LLM
参数。如果您期望获得合并后的模型权重,那么可以利用
``xtuner convert merge``
.. code:: console
$ xtuner convert merge ${LLM} ${ADAPTER_PATH} ${SAVE_PATH}
$ # 例如:xtuner convert merge internlm/internlm2-chat-7b ./iter_500_hf ./iter_500_merged_llm
对话
=====
用户可以利用 ``xtuner chat`` 实现与微调后的模型对话:
.. code:: console
$ xtuner chat ${NAME_OR_PATH_TO_LLM} --adapter ${NAME_OR_PATH_TO_ADAPTER} --prompt-template ${PROMPT_TEMPLATE} [optional arguments]
.. tip::
例如:
.. code:: console
$ xtuner chat internlm2/internlm2-chat-7b --adapter ./iter_500_hf --prompt-template internlm2_chat
$ xtuner chat ./iter_500_merged_llm --prompt-template internlm2_chat