================================ 开源指令微调数据集(LLM) ================================ HuggingFace Hub 中有众多优秀的开源数据,本节将以 `timdettmers/openassistant-guanaco `__ 开源指令微调数据集为例,讲解如何开始训练。为便于介绍,本节以 `internlm2_chat_7b_qlora_oasst1_e3 `__ 配置文件为基础进行讲解。 适配开源数据集 ===================== 不同的开源数据集有不同的数据「载入方式」和「字段格式」,因此我们需要针对所使用的开源数据集进行一些适配。 载入方式 ----------- XTuner 使用上游库 ``datasets`` 的统一载入接口 ``load_dataset``\ 。 .. code:: python data_path = 'timdettmers/openassistant-guanaco' train_dataset = dict( type=process_hf_dataset, dataset=dict(type=load_dataset, path=data_path), ...) .. tip:: 一般来说,若想要使用不同的开源数据集,用户只需修改 ``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``path`` 参数即可。 若想使用 openMind 数据集,可将 ``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``type`` 替换为 ``openmind.OmDataset``。 字段格式 -------- 为适配不同的开源数据集的字段格式,XTuner 开发并设计了一套 ``map_fn`` 机制,可以把不同的开源数据集转为统一的字段格式 .. code:: python from xtuner.dataset.map_fns import oasst1_map_fn train_dataset = dict( type=process_hf_dataset, ... dataset_map_fn=oasst1_map_fn, ...) XTuner 内置了众多 map_fn (\ `这里 `__\ ),可以满足大多数开源数据集的需要。此处我们罗列一些常用 map_fn 及其对应的原始字段和参考数据集: +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | map_fn | Columns | Reference Datasets | +====================================================================================================================================+===================================================+=======================================================================================================================+ | `alpaca_map_fn `__ | ['instruction', 'input', 'output', ...] | `tatsu-lab/alpaca `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `alpaca_zh_map_fn `__ | ['instruction_zh', 'input_zh', 'output_zh', ...] | `silk-road/alpaca-data-gpt4-chinese `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `oasst1_map_fn `__ | ['text', ...] | `timdettmers/openassistant-guanaco `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `openai_map_fn `__ | ['messages', ...] | `DavidLanz/fine_tuning_datraset_4_openai `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `code_alpaca_map_fn `__ | ['prompt', 'completion', ...] | `HuggingFaceH4/CodeAlpaca_20K `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `medical_map_fn `__ | ['instruction', 'input', 'output', ...] | `shibing624/medical `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `tiny_codes_map_fn `__ | ['prompt', 'response', ...] | `nampdn-ai/tiny-codes `__ | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | `default_map_fn `__ | ['input', 'output', ...] | / | +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ 例如,针对 ``timdettmers/openassistant-guanaco`` 数据集,XTuner 内置了 ``oasst1_map_fn``\ ,以对其进行字段格式统一。具体实现如下: .. code:: python def oasst1_map_fn(example): r"""Example before preprocessing: example['text'] = ('### Human: Can you explain xxx' '### Assistant: Sure! xxx' '### Human: I didn't understand how xxx' '### Assistant: It has to do with a process xxx.') Example after preprocessing: example['conversation'] = [ { 'input': 'Can you explain xxx', 'output': 'Sure! xxx' }, { 'input': 'I didn't understand how xxx', 'output': 'It has to do with a process xxx.' } ] """ data = [] for sentence in example['text'].strip().split('###'): sentence = sentence.strip() if sentence[:6] == 'Human:': data.append(sentence[6:].strip()) elif sentence[:10] == 'Assistant:': data.append(sentence[10:].strip()) if len(data) % 2: # The last round of conversation solely consists of input # without any output. # Discard the input part of the last round, as this part is ignored in # the loss calculation. data.pop() conversation = [] for i in range(0, len(data), 2): single_turn_conversation = {'input': data[i], 'output': data[i + 1]} conversation.append(single_turn_conversation) return {'conversation': conversation} 通过代码可以看到,\ ``oasst1_map_fn`` 对原数据中的 ``text`` 字段进行处理,进而构造了一个 ``conversation`` 字段,以此确保了后续数据处理流程的统一。 值得注意的是,如果部分开源数据集依赖特殊的 map_fn,则需要用户自行参照以提供的 map_fn 进行自定义开发,实现字段格式的对齐。 训练 ===== 用户可以使用 ``xtuner train`` 启动训练。假设所使用的配置文件路径为 ``./config.py``\ ,并使用 DeepSpeed ZeRO-2 优化。 单机单卡 -------- .. code:: console $ xtuner train ./config.py --deepspeed deepspeed_zero2 单机多卡 -------- .. code:: console $ NPROC_PER_NODE=${GPU_NUM} xtuner train ./config.py --deepspeed deepspeed_zero2 多机多卡(以 2 \* 8 GPUs 为例) -------------------------------------- **方法 1:torchrun** .. code:: console $ # excuete on node 0 $ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=0 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2 $ # excuete on node 1 $ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=1 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2 .. note:: \ ``$PORT`` 表示通信端口、\ ``$NODE_0_ADDR`` 表示 node 0 的 IP 地址。 二者并不是系统自带的环境变量,需要根据实际情况,替换为实际使用的值 **方法 2:slurm** .. code:: console $ srun -p $PARTITION --nodes=2 --gres=gpu:8 --ntasks-per-node=8 xtuner train internlm2_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2 模型转换 ========= 模型训练后会自动保存成 PTH 模型(例如 ``iter_500.pth``\ ),我们需要利用 ``xtuner convert pth_to_hf`` 将其转换为 HuggingFace 模型,以便于后续使用。具体命令为: .. code:: console $ xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH} $ # 例如:xtuner convert pth_to_hf ./config.py ./iter_500.pth ./iter_500_hf .. _模型合并可选): 模型合并(可选) ================ 如果您使用了 LoRA / QLoRA 微调,则模型转换后将得到 adapter 参数,而并不包含原 LLM 参数。如果您期望获得合并后的模型权重,那么可以利用 ``xtuner convert merge`` : .. code:: console $ xtuner convert merge ${LLM} ${ADAPTER_PATH} ${SAVE_PATH} $ # 例如:xtuner convert merge internlm/internlm2-chat-7b ./iter_500_hf ./iter_500_merged_llm 对话 ===== 用户可以利用 ``xtuner chat`` 实现与微调后的模型对话: .. code:: console $ xtuner chat ${NAME_OR_PATH_TO_LLM} --adapter ${NAME_OR_PATH_TO_ADAPTER} --prompt-template ${PROMPT_TEMPLATE} [optional arguments] .. tip:: 例如: .. code:: console $ xtuner chat internlm2/internlm2-chat-7b --adapter ./iter_500_hf --prompt-template internlm2_chat $ xtuner chat ./iter_500_merged_llm --prompt-template internlm2_chat