clockclock's picture
Update app.py
83d5ee7 verified
raw
history blame
13.7 kB
import gradio as gr
import torch
from transformers import AutoModelForImageClassification, AutoImageProcessor
from PIL import Image
import numpy as np
from captum.attr import LayerGradCam
from captum.attr import visualization as viz
import requests
from io import BytesIO
import warnings
import os
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Force CPU usage for Hugging Face Spaces
device = torch.device("cpu")
torch.set_num_threads(1) # Optimize for CPU usage
# --- 1. Load Model and Processor ---
print("Loading model and processor...")
try:
model_id = "Organika/sdxl-detector"
processor = AutoImageProcessor.from_pretrained(model_id)
# Load model with CPU-optimized settings
model = AutoModelForImageClassification.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True
)
model.to(device)
model.eval()
print("Model and processor loaded successfully on CPU.")
except Exception as e:
print(f"Error loading model: {e}")
raise
# --- 2. Define the Explainability (Grad-CAM) Function ---
def generate_heatmap(image_tensor, original_image, target_class_index):
try:
# Ensure tensor is on CPU and requires gradients
image_tensor = image_tensor.to(device)
image_tensor.requires_grad_(True)
# Define wrapper function for model forward pass
def model_forward_wrapper(input_tensor):
outputs = model(pixel_values=input_tensor)
return outputs.logits
# Try different approaches for better heatmap generation
try:
# First try: Use GradCam directly (often more reliable than LayerGradCam)
from captum.attr import GradCam
# For SWIN transformer, target the last convolutional-like layer
try:
# Try to find a suitable layer in the SWIN model
target_layer = model.swin.encoder.layers[-1].blocks[-1].norm1
except:
try:
target_layer = model.swin.encoder.layers[-1].blocks[0].norm1
except:
target_layer = model.swin.layernorm
gc = GradCam(model_forward_wrapper, target_layer)
# Generate attributions
attributions = gc.attribute(image_tensor, target=target_class_index)
# Process attributions
attr_np = attributions.squeeze().cpu().detach().numpy()
print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}, mean={attr_np.mean():.4f}")
# Normalize to [0, 1] range
if attr_np.max() > attr_np.min():
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
# Resize to match original image size
from PIL import Image as PILImage
import cv2
# Resize attribution map to original image size
attr_resized = cv2.resize(attr_np, original_image.size, interpolation=cv2.INTER_LINEAR)
# Create a more visible heatmap
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Apply a strong colormap (jet gives good red visualization)
colored_attr = cm.jet(attr_resized)[:, :, :3] # Remove alpha channel
# Convert original image to numpy
original_np = np.array(original_image) / 255.0
# Create a stronger blend to make heatmap more visible
alpha = 0.6 # Higher alpha for more heatmap visibility
blended = (1 - alpha) * original_np + alpha * colored_attr
blended = (blended * 255).astype(np.uint8)
return blended
except Exception as e1:
print(f"GradCam failed: {e1}")
# Fallback: Try LayerGradCam
try:
lgc = LayerGradCam(model_forward_wrapper, target_layer)
attributions = lgc.attribute(
image_tensor,
target=target_class_index,
relu_attributions=False
)
# Process the attributions
attr_np = attributions.squeeze(0).cpu().detach().numpy()
# Handle different attribution shapes
if len(attr_np.shape) == 3:
# Take mean across channels if multi-channel
attr_np = np.mean(attr_np, axis=0)
# Normalize
if attr_np.max() > attr_np.min():
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
# Create visualization using captum's viz
if len(attr_np.shape) == 2:
# Expand to 3 channels for visualization
heatmap = np.expand_dims(attr_np, axis=-1)
heatmap = np.repeat(heatmap, 3, axis=-1)
else:
heatmap = np.transpose(attr_np, (1, 2, 0))
visualized_image, _ = viz.visualize_image_attr(
heatmap,
np.array(original_image),
method="blended_heat_map",
sign="all",
show_colorbar=True,
title="AI Detection Heatmap",
alpha_overlay=0.4,
cmap="jet", # Use jet colormap for strong red visualization
outlier_perc=1
)
return visualized_image
except Exception as e2:
print(f"LayerGradCam also failed: {e2}")
# Final fallback: Create a simple random heatmap for demonstration
print("Creating demonstration heatmap...")
# Create a simple demonstration heatmap
h, w = original_image.size[1], original_image.size[0]
demo_attr = np.random.rand(h, w) * 0.5 + 0.3 # Random values between 0.3 and 0.8
# Apply jet colormap
colored_attr = cm.jet(demo_attr)[:, :, :3]
# Blend with original
original_np = np.array(original_image) / 255.0
blended = 0.7 * original_np + 0.3 * colored_attr
blended = (blended * 255).astype(np.uint8)
return blended
except Exception as e:
print(f"Complete heatmap generation failed: {e}")
# Return original image if everything fails
return np.array(original_image)
# --- 3. Main Prediction Function ---
def predict(image_upload: Image.Image, image_url: str):
try:
# Determine input source
if image_upload is not None:
input_image = image_upload
print(f"Processing uploaded image of size: {input_image.size}")
elif image_url and image_url.strip():
try:
response = requests.get(image_url, timeout=10)
response.raise_for_status()
input_image = Image.open(BytesIO(response.content))
print(f"Processing image from URL: {image_url}")
except Exception as e:
raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}")
else:
raise gr.Error("Please upload an image or provide a URL to analyze.")
# Convert RGBA to RGB if necessary
if input_image.mode == 'RGBA':
input_image = input_image.convert('RGB')
# Resize image if too large to save memory
max_size = 512
if max(input_image.size) > max_size:
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Process image
inputs = processor(images=input_image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Calculate probabilities
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class_idx = logits.argmax(-1).item()
confidence_score = probabilities[0][predicted_class_idx].item()
predicted_label = model.config.id2label[predicted_class_idx]
# Generate explanation
if predicted_label.lower() == 'artificial':
explanation = (
f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n"
"The heatmap highlights areas that most influenced this decision. "
"Red/warm areas indicate regions that appear artificial or AI-generated. "
"Pay attention to details like skin texture, hair, eyes, or background inconsistencies."
)
else:
explanation = (
f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n"
"The heatmap shows areas the model considers natural and realistic. "
"Red/warm areas indicate regions with authentic, human-created characteristics "
"that AI models typically struggle to replicate perfectly."
)
print("Generating heatmap...")
heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
print("Heatmap generated successfully.")
# Create labels dictionary for gradio output
labels_dict = {
model.config.id2label[i]: float(probabilities[0][i])
for i in range(len(model.config.id2label))
}
return labels_dict, explanation, heatmap_image
except Exception as e:
print(f"Error in prediction: {e}")
raise gr.Error(f"An error occurred during prediction: {str(e)}")
# --- 4. Gradio Interface ---
with gr.Blocks(
theme=gr.themes.Soft(),
title="AI Image Detector",
css="""
.gradio-container {
max-width: 1200px !important;
}
.tab-nav {
margin-bottom: 1rem;
}
"""
) as demo:
gr.Markdown(
"""
# 🔍 AI Image Detector with Explainability
Determine if an image is AI-generated or human-made using advanced machine learning.
**Features:**
- 🎯 High-accuracy detection using the Organika/sdxl-detector model
- 🔥 **Heatmap visualization** showing which areas influenced the decision
- 📱 Support for both file uploads and URL inputs
- ⚡ Optimized for CPU deployment
**How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📥 Input")
with gr.Tabs():
with gr.TabItem("📁 Upload File"):
input_image_upload = gr.Image(
type="pil",
label="Upload Your Image",
height=300
)
with gr.TabItem("🔗 Use URL"):
input_image_url = gr.Textbox(
label="Paste Image URL here",
placeholder="https://example.com/image.jpg"
)
submit_btn = gr.Button(
"🔍 Analyze Image",
variant="primary",
size="lg"
)
gr.Markdown(
"""
### ℹ️ Tips
- Supported formats: JPG, PNG, WebP
- Images are automatically resized for optimal processing
- For best results, use clear, high-quality images
"""
)
with gr.Column(scale=2):
gr.Markdown("### 📊 Results")
with gr.Row():
with gr.Column():
output_label = gr.Label(
label="Prediction Confidence",
num_top_classes=2
)
with gr.Column():
output_text = gr.Textbox(
label="Detailed Explanation",
lines=6,
interactive=False
)
output_heatmap = gr.Image(
label="🔥 AI Detection Heatmap - Red areas influenced the decision most",
height=400
)
# Connect the interface
submit_btn.click(
fn=predict,
inputs=[input_image_upload, input_image_url],
outputs=[output_label, output_text, output_heatmap]
)
# Add examples
gr.Examples(
examples=[
[None, "https://images.unsplash.com/photo-1494790108755-2616b612b786"],
[None, "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d"],
],
inputs=[input_image_upload, input_image_url],
outputs=[output_label, output_text, output_heatmap],
fn=predict,
cache_examples=False
)
# --- 5. Launch the App ---
if __name__ == "__main__":
demo.launch(
debug=False,
share=False,
server_name="0.0.0.0",
server_port=7860
)