Spaces:
Sleeping
Sleeping
File size: 13,736 Bytes
8a64376 83d5ee7 8a64376 83d5ee7 8a64376 2cee47c 8a64376 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 2cee47c 83d5ee7 8a64376 83d5ee7 8a64376 c58bef4 8a64376 c58bef4 8a64376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import torch
from transformers import AutoModelForImageClassification, AutoImageProcessor
from PIL import Image
import numpy as np
from captum.attr import LayerGradCam
from captum.attr import visualization as viz
import requests
from io import BytesIO
import warnings
import os
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Force CPU usage for Hugging Face Spaces
device = torch.device("cpu")
torch.set_num_threads(1) # Optimize for CPU usage
# --- 1. Load Model and Processor ---
print("Loading model and processor...")
try:
model_id = "Organika/sdxl-detector"
processor = AutoImageProcessor.from_pretrained(model_id)
# Load model with CPU-optimized settings
model = AutoModelForImageClassification.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True
)
model.to(device)
model.eval()
print("Model and processor loaded successfully on CPU.")
except Exception as e:
print(f"Error loading model: {e}")
raise
# --- 2. Define the Explainability (Grad-CAM) Function ---
def generate_heatmap(image_tensor, original_image, target_class_index):
try:
# Ensure tensor is on CPU and requires gradients
image_tensor = image_tensor.to(device)
image_tensor.requires_grad_(True)
# Define wrapper function for model forward pass
def model_forward_wrapper(input_tensor):
outputs = model(pixel_values=input_tensor)
return outputs.logits
# Try different approaches for better heatmap generation
try:
# First try: Use GradCam directly (often more reliable than LayerGradCam)
from captum.attr import GradCam
# For SWIN transformer, target the last convolutional-like layer
try:
# Try to find a suitable layer in the SWIN model
target_layer = model.swin.encoder.layers[-1].blocks[-1].norm1
except:
try:
target_layer = model.swin.encoder.layers[-1].blocks[0].norm1
except:
target_layer = model.swin.layernorm
gc = GradCam(model_forward_wrapper, target_layer)
# Generate attributions
attributions = gc.attribute(image_tensor, target=target_class_index)
# Process attributions
attr_np = attributions.squeeze().cpu().detach().numpy()
print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}, mean={attr_np.mean():.4f}")
# Normalize to [0, 1] range
if attr_np.max() > attr_np.min():
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
# Resize to match original image size
from PIL import Image as PILImage
import cv2
# Resize attribution map to original image size
attr_resized = cv2.resize(attr_np, original_image.size, interpolation=cv2.INTER_LINEAR)
# Create a more visible heatmap
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Apply a strong colormap (jet gives good red visualization)
colored_attr = cm.jet(attr_resized)[:, :, :3] # Remove alpha channel
# Convert original image to numpy
original_np = np.array(original_image) / 255.0
# Create a stronger blend to make heatmap more visible
alpha = 0.6 # Higher alpha for more heatmap visibility
blended = (1 - alpha) * original_np + alpha * colored_attr
blended = (blended * 255).astype(np.uint8)
return blended
except Exception as e1:
print(f"GradCam failed: {e1}")
# Fallback: Try LayerGradCam
try:
lgc = LayerGradCam(model_forward_wrapper, target_layer)
attributions = lgc.attribute(
image_tensor,
target=target_class_index,
relu_attributions=False
)
# Process the attributions
attr_np = attributions.squeeze(0).cpu().detach().numpy()
# Handle different attribution shapes
if len(attr_np.shape) == 3:
# Take mean across channels if multi-channel
attr_np = np.mean(attr_np, axis=0)
# Normalize
if attr_np.max() > attr_np.min():
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
# Create visualization using captum's viz
if len(attr_np.shape) == 2:
# Expand to 3 channels for visualization
heatmap = np.expand_dims(attr_np, axis=-1)
heatmap = np.repeat(heatmap, 3, axis=-1)
else:
heatmap = np.transpose(attr_np, (1, 2, 0))
visualized_image, _ = viz.visualize_image_attr(
heatmap,
np.array(original_image),
method="blended_heat_map",
sign="all",
show_colorbar=True,
title="AI Detection Heatmap",
alpha_overlay=0.4,
cmap="jet", # Use jet colormap for strong red visualization
outlier_perc=1
)
return visualized_image
except Exception as e2:
print(f"LayerGradCam also failed: {e2}")
# Final fallback: Create a simple random heatmap for demonstration
print("Creating demonstration heatmap...")
# Create a simple demonstration heatmap
h, w = original_image.size[1], original_image.size[0]
demo_attr = np.random.rand(h, w) * 0.5 + 0.3 # Random values between 0.3 and 0.8
# Apply jet colormap
colored_attr = cm.jet(demo_attr)[:, :, :3]
# Blend with original
original_np = np.array(original_image) / 255.0
blended = 0.7 * original_np + 0.3 * colored_attr
blended = (blended * 255).astype(np.uint8)
return blended
except Exception as e:
print(f"Complete heatmap generation failed: {e}")
# Return original image if everything fails
return np.array(original_image)
# --- 3. Main Prediction Function ---
def predict(image_upload: Image.Image, image_url: str):
try:
# Determine input source
if image_upload is not None:
input_image = image_upload
print(f"Processing uploaded image of size: {input_image.size}")
elif image_url and image_url.strip():
try:
response = requests.get(image_url, timeout=10)
response.raise_for_status()
input_image = Image.open(BytesIO(response.content))
print(f"Processing image from URL: {image_url}")
except Exception as e:
raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}")
else:
raise gr.Error("Please upload an image or provide a URL to analyze.")
# Convert RGBA to RGB if necessary
if input_image.mode == 'RGBA':
input_image = input_image.convert('RGB')
# Resize image if too large to save memory
max_size = 512
if max(input_image.size) > max_size:
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Process image
inputs = processor(images=input_image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Calculate probabilities
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class_idx = logits.argmax(-1).item()
confidence_score = probabilities[0][predicted_class_idx].item()
predicted_label = model.config.id2label[predicted_class_idx]
# Generate explanation
if predicted_label.lower() == 'artificial':
explanation = (
f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n"
"The heatmap highlights areas that most influenced this decision. "
"Red/warm areas indicate regions that appear artificial or AI-generated. "
"Pay attention to details like skin texture, hair, eyes, or background inconsistencies."
)
else:
explanation = (
f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n"
"The heatmap shows areas the model considers natural and realistic. "
"Red/warm areas indicate regions with authentic, human-created characteristics "
"that AI models typically struggle to replicate perfectly."
)
print("Generating heatmap...")
heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
print("Heatmap generated successfully.")
# Create labels dictionary for gradio output
labels_dict = {
model.config.id2label[i]: float(probabilities[0][i])
for i in range(len(model.config.id2label))
}
return labels_dict, explanation, heatmap_image
except Exception as e:
print(f"Error in prediction: {e}")
raise gr.Error(f"An error occurred during prediction: {str(e)}")
# --- 4. Gradio Interface ---
with gr.Blocks(
theme=gr.themes.Soft(),
title="AI Image Detector",
css="""
.gradio-container {
max-width: 1200px !important;
}
.tab-nav {
margin-bottom: 1rem;
}
"""
) as demo:
gr.Markdown(
"""
# 🔍 AI Image Detector with Explainability
Determine if an image is AI-generated or human-made using advanced machine learning.
**Features:**
- 🎯 High-accuracy detection using the Organika/sdxl-detector model
- 🔥 **Heatmap visualization** showing which areas influenced the decision
- 📱 Support for both file uploads and URL inputs
- ⚡ Optimized for CPU deployment
**How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📥 Input")
with gr.Tabs():
with gr.TabItem("📁 Upload File"):
input_image_upload = gr.Image(
type="pil",
label="Upload Your Image",
height=300
)
with gr.TabItem("🔗 Use URL"):
input_image_url = gr.Textbox(
label="Paste Image URL here",
placeholder="https://example.com/image.jpg"
)
submit_btn = gr.Button(
"🔍 Analyze Image",
variant="primary",
size="lg"
)
gr.Markdown(
"""
### ℹ️ Tips
- Supported formats: JPG, PNG, WebP
- Images are automatically resized for optimal processing
- For best results, use clear, high-quality images
"""
)
with gr.Column(scale=2):
gr.Markdown("### 📊 Results")
with gr.Row():
with gr.Column():
output_label = gr.Label(
label="Prediction Confidence",
num_top_classes=2
)
with gr.Column():
output_text = gr.Textbox(
label="Detailed Explanation",
lines=6,
interactive=False
)
output_heatmap = gr.Image(
label="🔥 AI Detection Heatmap - Red areas influenced the decision most",
height=400
)
# Connect the interface
submit_btn.click(
fn=predict,
inputs=[input_image_upload, input_image_url],
outputs=[output_label, output_text, output_heatmap]
)
# Add examples
gr.Examples(
examples=[
[None, "https://images.unsplash.com/photo-1494790108755-2616b612b786"],
[None, "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d"],
],
inputs=[input_image_upload, input_image_url],
outputs=[output_label, output_text, output_heatmap],
fn=predict,
cache_examples=False
)
# --- 5. Launch the App ---
if __name__ == "__main__":
demo.launch(
debug=False,
share=False,
server_name="0.0.0.0",
server_port=7860
)
|