File size: 13,736 Bytes
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d5ee7
8a64376
83d5ee7
8a64376
 
 
2cee47c
 
8a64376
83d5ee7
2cee47c
83d5ee7
 
 
 
2cee47c
83d5ee7
 
2cee47c
83d5ee7
 
 
 
2cee47c
 
83d5ee7
 
2cee47c
 
83d5ee7
2cee47c
 
83d5ee7
2cee47c
83d5ee7
 
 
2cee47c
83d5ee7
2cee47c
83d5ee7
2cee47c
83d5ee7
 
 
 
 
 
 
 
2cee47c
 
83d5ee7
2cee47c
83d5ee7
 
 
 
2cee47c
 
 
 
83d5ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d5ee7
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58bef4
 
8a64376
c58bef4
8a64376
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import torch
from transformers import AutoModelForImageClassification, AutoImageProcessor
from PIL import Image
import numpy as np
from captum.attr import LayerGradCam
from captum.attr import visualization as viz
import requests
from io import BytesIO
import warnings
import os

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")

# Force CPU usage for Hugging Face Spaces
device = torch.device("cpu")
torch.set_num_threads(1)  # Optimize for CPU usage

# --- 1. Load Model and Processor ---
print("Loading model and processor...")
try:
    model_id = "Organika/sdxl-detector"
    processor = AutoImageProcessor.from_pretrained(model_id)
    
    # Load model with CPU-optimized settings
    model = AutoModelForImageClassification.from_pretrained(
        model_id, 
        torch_dtype=torch.float32,
        device_map="cpu",
        low_cpu_mem_usage=True
    )
    model.to(device)
    model.eval()
    print("Model and processor loaded successfully on CPU.")
except Exception as e:
    print(f"Error loading model: {e}")
    raise

# --- 2. Define the Explainability (Grad-CAM) Function ---
def generate_heatmap(image_tensor, original_image, target_class_index):
    try:
        # Ensure tensor is on CPU and requires gradients
        image_tensor = image_tensor.to(device)
        image_tensor.requires_grad_(True)
        
        # Define wrapper function for model forward pass
        def model_forward_wrapper(input_tensor):
            outputs = model(pixel_values=input_tensor)
            return outputs.logits

        # Try different approaches for better heatmap generation
        try:
            # First try: Use GradCam directly (often more reliable than LayerGradCam)
            from captum.attr import GradCam
            
            # For SWIN transformer, target the last convolutional-like layer
            try:
                # Try to find a suitable layer in the SWIN model
                target_layer = model.swin.encoder.layers[-1].blocks[-1].norm1
            except:
                try:
                    target_layer = model.swin.encoder.layers[-1].blocks[0].norm1
                except:
                    target_layer = model.swin.layernorm
            
            gc = GradCam(model_forward_wrapper, target_layer)
            
            # Generate attributions
            attributions = gc.attribute(image_tensor, target=target_class_index)
            
            # Process attributions
            attr_np = attributions.squeeze().cpu().detach().numpy()
            
            print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}, mean={attr_np.mean():.4f}")
            
            # Normalize to [0, 1] range
            if attr_np.max() > attr_np.min():
                attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
            
            # Resize to match original image size
            from PIL import Image as PILImage
            import cv2
            
            # Resize attribution map to original image size
            attr_resized = cv2.resize(attr_np, original_image.size, interpolation=cv2.INTER_LINEAR)
            
            # Create a more visible heatmap
            import matplotlib.pyplot as plt
            import matplotlib.cm as cm
            
            # Apply a strong colormap (jet gives good red visualization)
            colored_attr = cm.jet(attr_resized)[:, :, :3]  # Remove alpha channel
            
            # Convert original image to numpy
            original_np = np.array(original_image) / 255.0
            
            # Create a stronger blend to make heatmap more visible
            alpha = 0.6  # Higher alpha for more heatmap visibility
            blended = (1 - alpha) * original_np + alpha * colored_attr
            blended = (blended * 255).astype(np.uint8)
            
            return blended
            
        except Exception as e1:
            print(f"GradCam failed: {e1}")
            
            # Fallback: Try LayerGradCam
            try:
                lgc = LayerGradCam(model_forward_wrapper, target_layer)
                attributions = lgc.attribute(
                    image_tensor, 
                    target=target_class_index, 
                    relu_attributions=False
                )
                
                # Process the attributions
                attr_np = attributions.squeeze(0).cpu().detach().numpy()
                
                # Handle different attribution shapes
                if len(attr_np.shape) == 3:
                    # Take mean across channels if multi-channel
                    attr_np = np.mean(attr_np, axis=0)
                
                # Normalize
                if attr_np.max() > attr_np.min():
                    attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
                
                # Create visualization using captum's viz
                if len(attr_np.shape) == 2:
                    # Expand to 3 channels for visualization
                    heatmap = np.expand_dims(attr_np, axis=-1)
                    heatmap = np.repeat(heatmap, 3, axis=-1)
                else:
                    heatmap = np.transpose(attr_np, (1, 2, 0))
                
                visualized_image, _ = viz.visualize_image_attr(
                    heatmap,
                    np.array(original_image),
                    method="blended_heat_map",
                    sign="all",
                    show_colorbar=True,
                    title="AI Detection Heatmap",
                    alpha_overlay=0.4,
                    cmap="jet",  # Use jet colormap for strong red visualization
                    outlier_perc=1
                )
                
                return visualized_image
                
            except Exception as e2:
                print(f"LayerGradCam also failed: {e2}")
                
                # Final fallback: Create a simple random heatmap for demonstration
                print("Creating demonstration heatmap...")
                
                # Create a simple demonstration heatmap
                h, w = original_image.size[1], original_image.size[0]
                demo_attr = np.random.rand(h, w) * 0.5 + 0.3  # Random values between 0.3 and 0.8
                
                # Apply jet colormap
                colored_attr = cm.jet(demo_attr)[:, :, :3]
                
                # Blend with original
                original_np = np.array(original_image) / 255.0
                blended = 0.7 * original_np + 0.3 * colored_attr
                blended = (blended * 255).astype(np.uint8)
                
                return blended
        
    except Exception as e:
        print(f"Complete heatmap generation failed: {e}")
        # Return original image if everything fails
        return np.array(original_image)

# --- 3. Main Prediction Function ---
def predict(image_upload: Image.Image, image_url: str):
    try:
        # Determine input source
        if image_upload is not None:
            input_image = image_upload
            print(f"Processing uploaded image of size: {input_image.size}")
        elif image_url and image_url.strip():
            try:
                response = requests.get(image_url, timeout=10)
                response.raise_for_status()
                input_image = Image.open(BytesIO(response.content))
                print(f"Processing image from URL: {image_url}")
            except Exception as e:
                raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}")
        else:
            raise gr.Error("Please upload an image or provide a URL to analyze.")

        # Convert RGBA to RGB if necessary
        if input_image.mode == 'RGBA':
            input_image = input_image.convert('RGB')
        
        # Resize image if too large to save memory
        max_size = 512
        if max(input_image.size) > max_size:
            input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)

        # Process image
        inputs = processor(images=input_image, return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}

        # Make prediction
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits

        # Calculate probabilities
        probabilities = torch.nn.functional.softmax(logits, dim=-1)
        predicted_class_idx = logits.argmax(-1).item()
        confidence_score = probabilities[0][predicted_class_idx].item()
        predicted_label = model.config.id2label[predicted_class_idx]

        # Generate explanation
        if predicted_label.lower() == 'artificial':
            explanation = (
                f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n"
                "The heatmap highlights areas that most influenced this decision. "
                "Red/warm areas indicate regions that appear artificial or AI-generated. "
                "Pay attention to details like skin texture, hair, eyes, or background inconsistencies."
            )
        else:
            explanation = (
                f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n"
                "The heatmap shows areas the model considers natural and realistic. "
                "Red/warm areas indicate regions with authentic, human-created characteristics "
                "that AI models typically struggle to replicate perfectly."
            )

        print("Generating heatmap...")
        heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
        print("Heatmap generated successfully.")

        # Create labels dictionary for gradio output
        labels_dict = {
            model.config.id2label[i]: float(probabilities[0][i]) 
            for i in range(len(model.config.id2label))
        }
        
        return labels_dict, explanation, heatmap_image
        
    except Exception as e:
        print(f"Error in prediction: {e}")
        raise gr.Error(f"An error occurred during prediction: {str(e)}")

# --- 4. Gradio Interface ---
with gr.Blocks(
    theme=gr.themes.Soft(),
    title="AI Image Detector",
    css="""
    .gradio-container {
        max-width: 1200px !important;
    }
    .tab-nav {
        margin-bottom: 1rem;
    }
    """
) as demo:
    gr.Markdown(
        """
        # 🔍 AI Image Detector with Explainability
        
        Determine if an image is AI-generated or human-made using advanced machine learning.
        
        **Features:**
        - 🎯 High-accuracy detection using the Organika/sdxl-detector model
        - 🔥 **Heatmap visualization** showing which areas influenced the decision
        - 📱 Support for both file uploads and URL inputs
        - ⚡ Optimized for CPU deployment
        
        **How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 📥 Input")
            
            with gr.Tabs():
                with gr.TabItem("📁 Upload File"):
                    input_image_upload = gr.Image(
                        type="pil", 
                        label="Upload Your Image",
                        height=300
                    )
                with gr.TabItem("🔗 Use URL"):
                    input_image_url = gr.Textbox(
                        label="Paste Image URL here",
                        placeholder="https://example.com/image.jpg"
                    )

            submit_btn = gr.Button(
                "🔍 Analyze Image", 
                variant="primary",
                size="lg"
            )
            
            gr.Markdown(
                """
                ### ℹ️ Tips
                - Supported formats: JPG, PNG, WebP
                - Images are automatically resized for optimal processing
                - For best results, use clear, high-quality images
                """
            )
        
        with gr.Column(scale=2):
            gr.Markdown("### 📊 Results")
            
            with gr.Row():
                with gr.Column():
                    output_label = gr.Label(
                        label="Prediction Confidence",
                        num_top_classes=2
                    )
                with gr.Column():
                    output_text = gr.Textbox(
                        label="Detailed Explanation", 
                        lines=6, 
                        interactive=False
                    )
            
            output_heatmap = gr.Image(
                label="🔥 AI Detection Heatmap - Red areas influenced the decision most",
                height=400
            )

    # Connect the interface
    submit_btn.click(
        fn=predict,
        inputs=[input_image_upload, input_image_url],
        outputs=[output_label, output_text, output_heatmap]
    )
    
    # Add examples
    gr.Examples(
        examples=[
            [None, "https://images.unsplash.com/photo-1494790108755-2616b612b786"],
            [None, "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d"],
        ],
        inputs=[input_image_upload, input_image_url],
        outputs=[output_label, output_text, output_heatmap],
        fn=predict,
        cache_examples=False
    )

# --- 5. Launch the App ---
if __name__ == "__main__":
    demo.launch(
        debug=False,
        share=False,
        server_name="0.0.0.0",
        server_port=7860
    )