cheng-hust's picture
Upload rtdetr_decoder.py
7ac818a verified
"""by lyuwenyu
"""
import math
import copy
from collections import OrderedDict
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
import torch.linalg
from .denoising import get_contrastive_denoising_training_group
from .utils import deformable_attention_core_func, get_activation, inverse_sigmoid
from .utils import bias_init_with_prob
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from src.core import register
import numpy as np
import scipy.linalg as sl
__all__ = ['RTDETRTransformer']
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class CoPE(nn.Module):
def __init__(self,npos_max,head_dim):
super(CoPE, self).__init__()
self.npos_max = npos_max #?
self.pos_emb = nn.parameter.Parameter(torch.zeros(1,head_dim,npos_max))
def forward(self,query,attn_logits):
#compute positions
gates = torch.sigmoid(attn_logits) #sig(qk)
pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
pos = pos.clamp(max=self.npos_max-1)
#interpolate from integer positions
pos_ceil = pos.ceil().long()
pos_floor = pos.floor().long()
logits_int = torch.matmul(query,self.pos_emb)
logits_ceil = logits_int.gather(-1,pos_ceil)
logits_floor = logits_int.gather(-1,pos_floor)
w = pos-pos_floor
return logits_ceil*w+logits_floor*(1-w)
class MSDeformableAttention(nn.Module):
def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4,):
"""
Multi-Scale Deformable Attention Module
"""
super(MSDeformableAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_levels = num_levels
self.num_points = num_points
self.total_points = num_heads * num_levels * num_points
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2,)
self.attention_weights = nn.Linear(embed_dim, self.total_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
self.ms_deformable_attn_core = deformable_attention_core_func
self._reset_parameters()
def _reset_parameters(self):
# sampling_offsets
init.constant_(self.sampling_offsets.weight, 0)
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
grid_init = grid_init.reshape(self.num_heads, 1, 1, 2).tile([1, self.num_levels, self.num_points, 1])
scaling = torch.arange(1, self.num_points + 1, dtype=torch.float32).reshape(1, 1, -1, 1)
grid_init *= scaling
self.sampling_offsets.bias.data[...] = grid_init.flatten()
# attention_weights
init.constant_(self.attention_weights.weight, 0)
init.constant_(self.attention_weights.bias, 0)
# proj
init.xavier_uniform_(self.value_proj.weight)
init.constant_(self.value_proj.bias, 0)
init.xavier_uniform_(self.output_proj.weight)
init.constant_(self.output_proj.bias, 0)
def forward(self,
query,
reference_points,
value,
value_spatial_shapes,
value_mask=None):
"""
Args:
query (Tensor): [bs, query_length, C]
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area
value (Tensor): [bs, value_length, C]
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
Returns:
output (Tensor): [bs, Length_{query}, C]
"""
bs, Len_q = query.shape[:2]
Len_v = value.shape[1]
value = self.value_proj(value)
if value_mask is not None:
value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
value *= value_mask
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)
sampling_offsets = self.sampling_offsets(query).reshape(
bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2)
attention_weights = self.attention_weights(query).reshape(
bs, Len_q, self.num_heads, self.num_levels * self.num_points)
attention_weights = F.softmax(attention_weights, dim=-1).reshape(
bs, Len_q, self.num_heads, self.num_levels, self.num_points)
if reference_points.shape[-1] == 2:
offset_normalizer = torch.tensor(value_spatial_shapes)
offset_normalizer = offset_normalizer.flip([1]).reshape(
1, 1, 1, self.num_levels, 1, 2)
sampling_locations = reference_points.reshape(
bs, Len_q, 1, self.num_levels, 1, 2
) + sampling_offsets / offset_normalizer
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2] + sampling_offsets /
self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5)
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".
format(reference_points.shape[-1]))
output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self,
d_model=256,
n_head=8,
dim_feedforward=1024,
dropout=0.,
activation="relu",
n_levels=4,
n_points=4,
cope='none',):
super(TransformerDecoderLayer, self).__init__()
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# cross attention
self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.activation = getattr(F, activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
if cope == '24':
self.cope = CoPE(24,d_model)
elif cope == '12':
self.cope = CoPE(12,d_model)
else:
self.cope = None
# self._reset_parameters()
# def _reset_parameters(self):
# linear_init_(self.linear1)
# linear_init_(self.linear2)
# xavier_uniform_(self.linear1.weight)
# xavier_uniform_(self.linear2.weight)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
def forward(self,
tgt,
reference_points,
memory,
memory_spatial_shapes,
memory_level_start_index,
attn_mask=None,
memory_mask=None,
query_pos_embed=None):
# self attention
#print(query_pos_embed.shape)
#qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
# mask = torch.tril(torch.ones_like(qk),diagonal=0)
# mask = torch.log(mask)
# query_pos_embed = self.cope(tgt,qk) #position_embedding
# n_tgt = tgt.cpu().detach().numpy()
#itgt = tgt.new_tensor(np.array([sl.pinv(i) for i in n_tgt])) #inv_tgt
# with torch.no_grad():
# try:
# itgt = torch.linalg.pinv(tgt)
# except:
# print('wrong!!')
# itgt = torch.pinverse(tgt.detach().cpu()).cuda()
# print('qk:',qk.shape)
# print('tgt:',tgt.shape)
# print(([email protected](-1,-2)).shape)
# print('ik:',itgt.shape)
# print(torch.round(itgt@tgt))
# print([email protected](-1,-2))
# k = tgt
# q = tgt + ([email protected](-1,-2))
# print((q@(k.transpose(-1,-2))-query_pos_embed))
# if attn_mask is not None:
# attn_mask = torch.where(
# attn_mask.to(torch.bool),
# torch.zeros_like(attn_mask),
# torch.full_like(attn_mask, float('-inf'), dtype=tgt.dtype))
if self.cope == None:
q = k = self.with_pos_embed(tgt, query_pos_embed)
else:
qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
query_pos_embed = self.cope(tgt,qk)
with torch.no_grad():
try:
itgt = torch.linalg.pinv(tgt)
except:
print('wrong!!')
itgt = torch.pinverse(tgt.detach().cpu()).cuda()
k = tgt
q = tgt + ([email protected](-1,-2))
tgt2, _ = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# cross attention
if self.cope:
tgt2 = self.cross_attn(\
self.with_pos_embed(tgt, [email protected](-1,-2)),#([email protected](-1,-2))), #self.with_pos_embed(tgt, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
else:
tgt2 = self.cross_attn(\
self.with_pos_embed(tgt, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# ffn
tgt2 = self.forward_ffn(tgt)
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoder(nn.Module):
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
super(TransformerDecoder, self).__init__()
self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)])
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
def forward(self,
tgt,
ref_points_unact,
memory,
memory_spatial_shapes,
memory_level_start_index,
bbox_head,
score_head,
query_pos_head,
attn_mask=None,
memory_mask=None):
output = tgt
dec_out_bboxes = []
dec_out_logits = []
ref_points_detach = F.sigmoid(ref_points_unact)
for i, layer in enumerate(self.layers):
ref_points_input = ref_points_detach.unsqueeze(2)
query_pos_embed = query_pos_head(ref_points_detach)
output = layer(output, ref_points_input, memory,
memory_spatial_shapes, memory_level_start_index,
attn_mask, memory_mask, query_pos_embed)
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
if self.training:
dec_out_logits.append(score_head[i](output))
if i == 0:
dec_out_bboxes.append(inter_ref_bbox)
else:
dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
elif i == self.eval_idx:
dec_out_logits.append(score_head[i](output))
dec_out_bboxes.append(inter_ref_bbox)
break
ref_points = inter_ref_bbox
ref_points_detach = inter_ref_bbox.detach(
) if self.training else inter_ref_bbox
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
@register
class RTDETRTransformer(nn.Module):
__share__ = ['num_classes']
def __init__(self,
num_classes=80,
hidden_dim=256,
num_queries=300,
position_embed_type='sine',
feat_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
num_levels=3,
num_decoder_points=4,
nhead=8,
num_decoder_layers=6,
dim_feedforward=1024,
dropout=0.,
activation="relu",
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
learnt_init_query=False,
eval_spatial_size=None,
eval_idx=-1,
eps=1e-2,
aux_loss=True,
cope='None',):
super(RTDETRTransformer, self).__init__()
assert position_embed_type in ['sine', 'learned'], \
f'ValueError: position_embed_type not supported {position_embed_type}!'
assert len(feat_channels) <= num_levels
assert len(feat_strides) == len(feat_channels)
for _ in range(num_levels - len(feat_strides)):
feat_strides.append(feat_strides[-1] * 2)
self.hidden_dim = hidden_dim
self.nhead = nhead
self.feat_strides = feat_strides
self.num_levels = num_levels
self.num_classes = num_classes
self.num_queries = num_queries
self.eps = eps
self.num_decoder_layers = num_decoder_layers
self.eval_spatial_size = eval_spatial_size
self.aux_loss = aux_loss
# backbone feature projection
self._build_input_proj_layer(feat_channels)
# Transformer module
decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels, num_decoder_points,cope)
self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx)
self.num_denoising = num_denoising
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
# denoising part
if num_denoising > 0:
# self.denoising_class_embed = nn.Embedding(num_classes, hidden_dim, padding_idx=num_classes-1) # TODO for load paddle weights
self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes)
# decoder embedding
self.learnt_init_query = learnt_init_query
if learnt_init_query:
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
# encoder head
self.enc_output = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim,)
)
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
# decoder head
self.dec_score_head = nn.ModuleList([
nn.Linear(hidden_dim, num_classes)
for _ in range(num_decoder_layers)
])
self.dec_bbox_head = nn.ModuleList([
MLP(hidden_dim, hidden_dim, 4, num_layers=3)
for _ in range(num_decoder_layers)
])
# init encoder output anchors and valid_mask
if self.eval_spatial_size:
self.anchors, self.valid_mask = self._generate_anchors()
self._reset_parameters()
def _reset_parameters(self):
bias = bias_init_with_prob(0.01)
init.constant_(self.enc_score_head.bias, bias)
init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
init.constant_(self.enc_bbox_head.layers[-1].bias, 0)
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
init.constant_(cls_.bias, bias)
init.constant_(reg_.layers[-1].weight, 0)
init.constant_(reg_.layers[-1].bias, 0)
# linear_init_(self.enc_output[0])
init.xavier_uniform_(self.enc_output[0].weight)
if self.learnt_init_query:
init.xavier_uniform_(self.tgt_embed.weight)
init.xavier_uniform_(self.query_pos_head.layers[0].weight)
init.xavier_uniform_(self.query_pos_head.layers[1].weight)
def _build_input_proj_layer(self, feat_channels):
self.input_proj = nn.ModuleList()
for in_channels in feat_channels:
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim,))])
)
)
in_channels = feat_channels[-1]
for _ in range(self.num_levels - len(feat_channels)):
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim))])
)
)
in_channels = self.hidden_dim
def _get_encoder_input(self, feats):
# get projection features
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
if self.num_levels > len(proj_feats):
len_srcs = len(proj_feats)
for i in range(len_srcs, self.num_levels):
if i == len_srcs:
proj_feats.append(self.input_proj[i](feats[-1]))
else:
proj_feats.append(self.input_proj[i](proj_feats[-1]))
# get encoder inputs
feat_flatten = []
spatial_shapes = []
level_start_index = [0, ]
for i, feat in enumerate(proj_feats):
_, _, h, w = feat.shape
# [b, c, h, w] -> [b, h*w, c]
feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
# [num_levels, 2]
spatial_shapes.append([h, w])
# [l], start index of each level
level_start_index.append(h * w + level_start_index[-1])
# [b, l, c]
feat_flatten = torch.concat(feat_flatten, 1)
level_start_index.pop()
return (feat_flatten, spatial_shapes, level_start_index)
def _generate_anchors(self,
spatial_shapes=None,
grid_size=0.05,
dtype=torch.float32,
device='cpu'):
if spatial_shapes is None:
spatial_shapes = [[int(self.eval_spatial_size[0] / s), int(self.eval_spatial_size[1] / s)]
for s in self.feat_strides
]
anchors = []
for lvl, (h, w) in enumerate(spatial_shapes):
grid_y, grid_x = torch.meshgrid(\
torch.arange(end=h, dtype=dtype), \
torch.arange(end=w, dtype=dtype), indexing='ij')
grid_xy = torch.stack([grid_x, grid_y], -1)
valid_WH = torch.tensor([w, h]).to(dtype)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, h * w, 4))
anchors = torch.concat(anchors, 1).to(device)
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
anchors = torch.log(anchors / (1 - anchors))
# anchors = torch.where(valid_mask, anchors, float('inf'))
# anchors[valid_mask] = torch.inf # valid_mask [1, 8400, 1]
anchors = torch.where(valid_mask, anchors, torch.inf)
return anchors, valid_mask
def _get_decoder_input(self,
memory,
spatial_shapes,
denoising_class=None,
denoising_bbox_unact=None):
bs, _, _ = memory.shape
# prepare input for decoder
if self.training or self.eval_spatial_size is None:
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device)
else:
anchors, valid_mask = self.anchors.to(memory.device), self.valid_mask.to(memory.device)
# memory = torch.where(valid_mask, memory, 0)
memory = valid_mask.to(memory.dtype) * memory # TODO fix type error for onnx export
output_memory = self.enc_output(memory)
enc_outputs_class = self.enc_score_head(output_memory)
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1)
reference_points_unact = enc_outputs_coord_unact.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1]))
enc_topk_bboxes = F.sigmoid(reference_points_unact)
if denoising_bbox_unact is not None:
reference_points_unact = torch.concat(
[denoising_bbox_unact, reference_points_unact], 1)
enc_topk_logits = enc_outputs_class.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1]))
# extract region features
if self.learnt_init_query:
target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
else:
target = output_memory.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
target = target.detach()
if denoising_class is not None:
target = torch.concat([denoising_class, target], 1)
return target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits
def forward(self, feats, targets=None):
# input projection and embedding
(memory, spatial_shapes, level_start_index) = self._get_encoder_input(feats)
# prepare denoising training
if self.training and self.num_denoising > 0:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
get_contrastive_denoising_training_group(targets, \
self.num_classes,
self.num_queries,
self.denoising_class_embed,
num_denoising=self.num_denoising,
label_noise_ratio=self.label_noise_ratio,
box_noise_scale=self.box_noise_scale, )
else:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact)
# decoder
out_bboxes, out_logits = self.decoder(
target,
init_ref_points_unact,
memory,
spatial_shapes,
level_start_index,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask)
if self.training and dn_meta is not None:
dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2)
dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2)
out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]}
if self.training and self.aux_loss:
out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1])
out['aux_outputs'].extend(self._set_aux_loss([enc_topk_logits], [enc_topk_bboxes]))
if self.training and dn_meta is not None:
out['dn_aux_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes)
out['dn_meta'] = dn_meta
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class, outputs_coord)]