|
"""by lyuwenyu |
|
""" |
|
|
|
import math |
|
import copy |
|
from collections import OrderedDict |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.init as init |
|
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ |
|
from torch.nn.parameter import Parameter |
|
import torch.linalg |
|
|
|
from .denoising import get_contrastive_denoising_training_group |
|
from .utils import deformable_attention_core_func, get_activation, inverse_sigmoid |
|
from .utils import bias_init_with_prob |
|
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear |
|
|
|
from src.core import register |
|
|
|
import numpy as np |
|
|
|
import scipy.linalg as sl |
|
|
|
__all__ = ['RTDETRTransformer'] |
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
self.act = nn.Identity() if act is None else get_activation(act) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
return x |
|
|
|
|
|
class CoPE(nn.Module): |
|
def __init__(self,npos_max,head_dim): |
|
super(CoPE, self).__init__() |
|
self.npos_max = npos_max |
|
self.pos_emb = nn.parameter.Parameter(torch.zeros(1,head_dim,npos_max)) |
|
|
|
def forward(self,query,attn_logits): |
|
|
|
gates = torch.sigmoid(attn_logits) |
|
pos = gates.flip(-1).cumsum(dim=-1).flip(-1) |
|
pos = pos.clamp(max=self.npos_max-1) |
|
|
|
pos_ceil = pos.ceil().long() |
|
pos_floor = pos.floor().long() |
|
logits_int = torch.matmul(query,self.pos_emb) |
|
logits_ceil = logits_int.gather(-1,pos_ceil) |
|
logits_floor = logits_int.gather(-1,pos_floor) |
|
w = pos-pos_floor |
|
return logits_ceil*w+logits_floor*(1-w) |
|
|
|
|
|
|
|
|
|
class MSDeformableAttention(nn.Module): |
|
def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4,): |
|
""" |
|
Multi-Scale Deformable Attention Module |
|
""" |
|
super(MSDeformableAttention, self).__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.num_levels = num_levels |
|
self.num_points = num_points |
|
self.total_points = num_heads * num_levels * num_points |
|
|
|
self.head_dim = embed_dim // num_heads |
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
|
|
|
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2,) |
|
self.attention_weights = nn.Linear(embed_dim, self.total_points) |
|
self.value_proj = nn.Linear(embed_dim, embed_dim) |
|
self.output_proj = nn.Linear(embed_dim, embed_dim) |
|
|
|
self.ms_deformable_attn_core = deformable_attention_core_func |
|
|
|
self._reset_parameters() |
|
|
|
|
|
def _reset_parameters(self): |
|
|
|
init.constant_(self.sampling_offsets.weight, 0) |
|
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads) |
|
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) |
|
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values |
|
grid_init = grid_init.reshape(self.num_heads, 1, 1, 2).tile([1, self.num_levels, self.num_points, 1]) |
|
scaling = torch.arange(1, self.num_points + 1, dtype=torch.float32).reshape(1, 1, -1, 1) |
|
grid_init *= scaling |
|
self.sampling_offsets.bias.data[...] = grid_init.flatten() |
|
|
|
|
|
init.constant_(self.attention_weights.weight, 0) |
|
init.constant_(self.attention_weights.bias, 0) |
|
|
|
|
|
init.xavier_uniform_(self.value_proj.weight) |
|
init.constant_(self.value_proj.bias, 0) |
|
init.xavier_uniform_(self.output_proj.weight) |
|
init.constant_(self.output_proj.bias, 0) |
|
|
|
|
|
def forward(self, |
|
query, |
|
reference_points, |
|
value, |
|
value_spatial_shapes, |
|
value_mask=None): |
|
""" |
|
Args: |
|
query (Tensor): [bs, query_length, C] |
|
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), |
|
bottom-right (1, 1), including padding area |
|
value (Tensor): [bs, value_length, C] |
|
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] |
|
value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...] |
|
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements |
|
|
|
Returns: |
|
output (Tensor): [bs, Length_{query}, C] |
|
""" |
|
bs, Len_q = query.shape[:2] |
|
Len_v = value.shape[1] |
|
|
|
value = self.value_proj(value) |
|
if value_mask is not None: |
|
value_mask = value_mask.astype(value.dtype).unsqueeze(-1) |
|
value *= value_mask |
|
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim) |
|
|
|
sampling_offsets = self.sampling_offsets(query).reshape( |
|
bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2) |
|
attention_weights = self.attention_weights(query).reshape( |
|
bs, Len_q, self.num_heads, self.num_levels * self.num_points) |
|
attention_weights = F.softmax(attention_weights, dim=-1).reshape( |
|
bs, Len_q, self.num_heads, self.num_levels, self.num_points) |
|
|
|
if reference_points.shape[-1] == 2: |
|
offset_normalizer = torch.tensor(value_spatial_shapes) |
|
offset_normalizer = offset_normalizer.flip([1]).reshape( |
|
1, 1, 1, self.num_levels, 1, 2) |
|
sampling_locations = reference_points.reshape( |
|
bs, Len_q, 1, self.num_levels, 1, 2 |
|
) + sampling_offsets / offset_normalizer |
|
elif reference_points.shape[-1] == 4: |
|
sampling_locations = ( |
|
reference_points[:, :, None, :, None, :2] + sampling_offsets / |
|
self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5) |
|
else: |
|
raise ValueError( |
|
"Last dim of reference_points must be 2 or 4, but get {} instead.". |
|
format(reference_points.shape[-1])) |
|
|
|
output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights) |
|
|
|
output = self.output_proj(output) |
|
|
|
return output |
|
|
|
|
|
class TransformerDecoderLayer(nn.Module): |
|
def __init__(self, |
|
d_model=256, |
|
n_head=8, |
|
dim_feedforward=1024, |
|
dropout=0., |
|
activation="relu", |
|
n_levels=4, |
|
n_points=4, |
|
cope='none',): |
|
super(TransformerDecoderLayer, self).__init__() |
|
|
|
|
|
self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.activation = getattr(F, activation) |
|
self.dropout3 = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
self.dropout4 = nn.Dropout(dropout) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
|
|
if cope == '24': |
|
self.cope = CoPE(24,d_model) |
|
elif cope == '12': |
|
self.cope = CoPE(12,d_model) |
|
else: |
|
self.cope = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def with_pos_embed(self, tensor, pos): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_ffn(self, tgt): |
|
return self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) |
|
|
|
def forward(self, |
|
tgt, |
|
reference_points, |
|
memory, |
|
memory_spatial_shapes, |
|
memory_level_start_index, |
|
attn_mask=None, |
|
memory_mask=None, |
|
query_pos_embed=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.cope == None: |
|
q = k = self.with_pos_embed(tgt, query_pos_embed) |
|
else: |
|
qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2)) |
|
query_pos_embed = self.cope(tgt,qk) |
|
with torch.no_grad(): |
|
try: |
|
itgt = torch.linalg.pinv(tgt) |
|
except: |
|
print('wrong!!') |
|
itgt = torch.pinverse(tgt.detach().cpu()).cuda() |
|
k = tgt |
|
q = tgt + ([email protected](-1,-2)) |
|
|
|
|
|
tgt2, _ = self.self_attn(q, k, value=tgt, attn_mask=attn_mask) |
|
tgt = tgt + self.dropout1(tgt2) |
|
tgt = self.norm1(tgt) |
|
|
|
|
|
if self.cope: |
|
tgt2 = self.cross_attn(\ |
|
self.with_pos_embed(tgt, [email protected](-1,-2)), |
|
reference_points, |
|
memory, |
|
memory_spatial_shapes, |
|
memory_mask) |
|
else: |
|
tgt2 = self.cross_attn(\ |
|
self.with_pos_embed(tgt, query_pos_embed), |
|
reference_points, |
|
memory, |
|
memory_spatial_shapes, |
|
memory_mask) |
|
|
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt = self.norm2(tgt) |
|
|
|
|
|
tgt2 = self.forward_ffn(tgt) |
|
tgt = tgt + self.dropout4(tgt2) |
|
tgt = self.norm3(tgt) |
|
|
|
return tgt |
|
|
|
|
|
class TransformerDecoder(nn.Module): |
|
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1): |
|
super(TransformerDecoder, self).__init__() |
|
self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)]) |
|
self.hidden_dim = hidden_dim |
|
self.num_layers = num_layers |
|
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx |
|
|
|
def forward(self, |
|
tgt, |
|
ref_points_unact, |
|
memory, |
|
memory_spatial_shapes, |
|
memory_level_start_index, |
|
bbox_head, |
|
score_head, |
|
query_pos_head, |
|
attn_mask=None, |
|
memory_mask=None): |
|
output = tgt |
|
dec_out_bboxes = [] |
|
dec_out_logits = [] |
|
ref_points_detach = F.sigmoid(ref_points_unact) |
|
|
|
for i, layer in enumerate(self.layers): |
|
ref_points_input = ref_points_detach.unsqueeze(2) |
|
query_pos_embed = query_pos_head(ref_points_detach) |
|
|
|
output = layer(output, ref_points_input, memory, |
|
memory_spatial_shapes, memory_level_start_index, |
|
attn_mask, memory_mask, query_pos_embed) |
|
|
|
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach)) |
|
|
|
if self.training: |
|
dec_out_logits.append(score_head[i](output)) |
|
if i == 0: |
|
dec_out_bboxes.append(inter_ref_bbox) |
|
else: |
|
dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points))) |
|
|
|
elif i == self.eval_idx: |
|
dec_out_logits.append(score_head[i](output)) |
|
dec_out_bboxes.append(inter_ref_bbox) |
|
break |
|
|
|
ref_points = inter_ref_bbox |
|
ref_points_detach = inter_ref_bbox.detach( |
|
) if self.training else inter_ref_bbox |
|
|
|
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits) |
|
|
|
|
|
@register |
|
class RTDETRTransformer(nn.Module): |
|
__share__ = ['num_classes'] |
|
def __init__(self, |
|
num_classes=80, |
|
hidden_dim=256, |
|
num_queries=300, |
|
position_embed_type='sine', |
|
feat_channels=[512, 1024, 2048], |
|
feat_strides=[8, 16, 32], |
|
num_levels=3, |
|
num_decoder_points=4, |
|
nhead=8, |
|
num_decoder_layers=6, |
|
dim_feedforward=1024, |
|
dropout=0., |
|
activation="relu", |
|
num_denoising=100, |
|
label_noise_ratio=0.5, |
|
box_noise_scale=1.0, |
|
learnt_init_query=False, |
|
eval_spatial_size=None, |
|
eval_idx=-1, |
|
eps=1e-2, |
|
aux_loss=True, |
|
cope='None',): |
|
|
|
super(RTDETRTransformer, self).__init__() |
|
assert position_embed_type in ['sine', 'learned'], \ |
|
f'ValueError: position_embed_type not supported {position_embed_type}!' |
|
assert len(feat_channels) <= num_levels |
|
assert len(feat_strides) == len(feat_channels) |
|
for _ in range(num_levels - len(feat_strides)): |
|
feat_strides.append(feat_strides[-1] * 2) |
|
|
|
self.hidden_dim = hidden_dim |
|
self.nhead = nhead |
|
self.feat_strides = feat_strides |
|
self.num_levels = num_levels |
|
self.num_classes = num_classes |
|
self.num_queries = num_queries |
|
self.eps = eps |
|
self.num_decoder_layers = num_decoder_layers |
|
self.eval_spatial_size = eval_spatial_size |
|
self.aux_loss = aux_loss |
|
|
|
|
|
self._build_input_proj_layer(feat_channels) |
|
|
|
|
|
decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels, num_decoder_points,cope) |
|
self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx) |
|
|
|
self.num_denoising = num_denoising |
|
self.label_noise_ratio = label_noise_ratio |
|
self.box_noise_scale = box_noise_scale |
|
|
|
if num_denoising > 0: |
|
|
|
self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes) |
|
|
|
|
|
self.learnt_init_query = learnt_init_query |
|
if learnt_init_query: |
|
self.tgt_embed = nn.Embedding(num_queries, hidden_dim) |
|
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2) |
|
|
|
|
|
self.enc_output = nn.Sequential( |
|
nn.Linear(hidden_dim, hidden_dim), |
|
nn.LayerNorm(hidden_dim,) |
|
) |
|
self.enc_score_head = nn.Linear(hidden_dim, num_classes) |
|
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3) |
|
|
|
|
|
self.dec_score_head = nn.ModuleList([ |
|
nn.Linear(hidden_dim, num_classes) |
|
for _ in range(num_decoder_layers) |
|
]) |
|
self.dec_bbox_head = nn.ModuleList([ |
|
MLP(hidden_dim, hidden_dim, 4, num_layers=3) |
|
for _ in range(num_decoder_layers) |
|
]) |
|
|
|
|
|
if self.eval_spatial_size: |
|
self.anchors, self.valid_mask = self._generate_anchors() |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
bias = bias_init_with_prob(0.01) |
|
|
|
init.constant_(self.enc_score_head.bias, bias) |
|
init.constant_(self.enc_bbox_head.layers[-1].weight, 0) |
|
init.constant_(self.enc_bbox_head.layers[-1].bias, 0) |
|
|
|
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head): |
|
init.constant_(cls_.bias, bias) |
|
init.constant_(reg_.layers[-1].weight, 0) |
|
init.constant_(reg_.layers[-1].bias, 0) |
|
|
|
|
|
init.xavier_uniform_(self.enc_output[0].weight) |
|
if self.learnt_init_query: |
|
init.xavier_uniform_(self.tgt_embed.weight) |
|
init.xavier_uniform_(self.query_pos_head.layers[0].weight) |
|
init.xavier_uniform_(self.query_pos_head.layers[1].weight) |
|
|
|
|
|
def _build_input_proj_layer(self, feat_channels): |
|
self.input_proj = nn.ModuleList() |
|
for in_channels in feat_channels: |
|
self.input_proj.append( |
|
nn.Sequential(OrderedDict([ |
|
('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)), |
|
('norm', nn.BatchNorm2d(self.hidden_dim,))]) |
|
) |
|
) |
|
|
|
in_channels = feat_channels[-1] |
|
|
|
for _ in range(self.num_levels - len(feat_channels)): |
|
self.input_proj.append( |
|
nn.Sequential(OrderedDict([ |
|
('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)), |
|
('norm', nn.BatchNorm2d(self.hidden_dim))]) |
|
) |
|
) |
|
in_channels = self.hidden_dim |
|
|
|
def _get_encoder_input(self, feats): |
|
|
|
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)] |
|
if self.num_levels > len(proj_feats): |
|
len_srcs = len(proj_feats) |
|
for i in range(len_srcs, self.num_levels): |
|
if i == len_srcs: |
|
proj_feats.append(self.input_proj[i](feats[-1])) |
|
else: |
|
proj_feats.append(self.input_proj[i](proj_feats[-1])) |
|
|
|
|
|
feat_flatten = [] |
|
spatial_shapes = [] |
|
level_start_index = [0, ] |
|
for i, feat in enumerate(proj_feats): |
|
_, _, h, w = feat.shape |
|
|
|
feat_flatten.append(feat.flatten(2).permute(0, 2, 1)) |
|
|
|
spatial_shapes.append([h, w]) |
|
|
|
level_start_index.append(h * w + level_start_index[-1]) |
|
|
|
|
|
feat_flatten = torch.concat(feat_flatten, 1) |
|
level_start_index.pop() |
|
return (feat_flatten, spatial_shapes, level_start_index) |
|
|
|
def _generate_anchors(self, |
|
spatial_shapes=None, |
|
grid_size=0.05, |
|
dtype=torch.float32, |
|
device='cpu'): |
|
if spatial_shapes is None: |
|
spatial_shapes = [[int(self.eval_spatial_size[0] / s), int(self.eval_spatial_size[1] / s)] |
|
for s in self.feat_strides |
|
] |
|
anchors = [] |
|
for lvl, (h, w) in enumerate(spatial_shapes): |
|
grid_y, grid_x = torch.meshgrid(\ |
|
torch.arange(end=h, dtype=dtype), \ |
|
torch.arange(end=w, dtype=dtype), indexing='ij') |
|
grid_xy = torch.stack([grid_x, grid_y], -1) |
|
valid_WH = torch.tensor([w, h]).to(dtype) |
|
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH |
|
wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl) |
|
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, h * w, 4)) |
|
|
|
anchors = torch.concat(anchors, 1).to(device) |
|
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True) |
|
anchors = torch.log(anchors / (1 - anchors)) |
|
|
|
|
|
anchors = torch.where(valid_mask, anchors, torch.inf) |
|
|
|
return anchors, valid_mask |
|
|
|
|
|
def _get_decoder_input(self, |
|
memory, |
|
spatial_shapes, |
|
denoising_class=None, |
|
denoising_bbox_unact=None): |
|
bs, _, _ = memory.shape |
|
|
|
if self.training or self.eval_spatial_size is None: |
|
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device) |
|
else: |
|
anchors, valid_mask = self.anchors.to(memory.device), self.valid_mask.to(memory.device) |
|
|
|
|
|
memory = valid_mask.to(memory.dtype) * memory |
|
|
|
output_memory = self.enc_output(memory) |
|
|
|
enc_outputs_class = self.enc_score_head(output_memory) |
|
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors |
|
|
|
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1) |
|
|
|
reference_points_unact = enc_outputs_coord_unact.gather(dim=1, \ |
|
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1])) |
|
|
|
enc_topk_bboxes = F.sigmoid(reference_points_unact) |
|
if denoising_bbox_unact is not None: |
|
reference_points_unact = torch.concat( |
|
[denoising_bbox_unact, reference_points_unact], 1) |
|
|
|
enc_topk_logits = enc_outputs_class.gather(dim=1, \ |
|
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1])) |
|
|
|
|
|
if self.learnt_init_query: |
|
target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1]) |
|
else: |
|
target = output_memory.gather(dim=1, \ |
|
index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1])) |
|
target = target.detach() |
|
|
|
if denoising_class is not None: |
|
target = torch.concat([denoising_class, target], 1) |
|
|
|
return target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits |
|
|
|
|
|
def forward(self, feats, targets=None): |
|
|
|
|
|
(memory, spatial_shapes, level_start_index) = self._get_encoder_input(feats) |
|
|
|
|
|
if self.training and self.num_denoising > 0: |
|
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \ |
|
get_contrastive_denoising_training_group(targets, \ |
|
self.num_classes, |
|
self.num_queries, |
|
self.denoising_class_embed, |
|
num_denoising=self.num_denoising, |
|
label_noise_ratio=self.label_noise_ratio, |
|
box_noise_scale=self.box_noise_scale, ) |
|
else: |
|
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None |
|
|
|
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \ |
|
self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact) |
|
|
|
|
|
out_bboxes, out_logits = self.decoder( |
|
target, |
|
init_ref_points_unact, |
|
memory, |
|
spatial_shapes, |
|
level_start_index, |
|
self.dec_bbox_head, |
|
self.dec_score_head, |
|
self.query_pos_head, |
|
attn_mask=attn_mask) |
|
|
|
if self.training and dn_meta is not None: |
|
dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2) |
|
dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2) |
|
|
|
out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]} |
|
|
|
if self.training and self.aux_loss: |
|
out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1]) |
|
out['aux_outputs'].extend(self._set_aux_loss([enc_topk_logits], [enc_topk_bboxes])) |
|
|
|
if self.training and dn_meta is not None: |
|
out['dn_aux_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes) |
|
out['dn_meta'] = dn_meta |
|
|
|
return out |
|
|
|
|
|
@torch.jit.unused |
|
def _set_aux_loss(self, outputs_class, outputs_coord): |
|
|
|
|
|
|
|
return [{'pred_logits': a, 'pred_boxes': b} |
|
for a, b in zip(outputs_class, outputs_coord)] |
|
|