File size: 25,948 Bytes
7ac818a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
"""by lyuwenyu
"""
import math
import copy
from collections import OrderedDict
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
import torch.linalg
from .denoising import get_contrastive_denoising_training_group
from .utils import deformable_attention_core_func, get_activation, inverse_sigmoid
from .utils import bias_init_with_prob
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from src.core import register
import numpy as np
import scipy.linalg as sl
__all__ = ['RTDETRTransformer']
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class CoPE(nn.Module):
def __init__(self,npos_max,head_dim):
super(CoPE, self).__init__()
self.npos_max = npos_max #?
self.pos_emb = nn.parameter.Parameter(torch.zeros(1,head_dim,npos_max))
def forward(self,query,attn_logits):
#compute positions
gates = torch.sigmoid(attn_logits) #sig(qk)
pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
pos = pos.clamp(max=self.npos_max-1)
#interpolate from integer positions
pos_ceil = pos.ceil().long()
pos_floor = pos.floor().long()
logits_int = torch.matmul(query,self.pos_emb)
logits_ceil = logits_int.gather(-1,pos_ceil)
logits_floor = logits_int.gather(-1,pos_floor)
w = pos-pos_floor
return logits_ceil*w+logits_floor*(1-w)
class MSDeformableAttention(nn.Module):
def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4,):
"""
Multi-Scale Deformable Attention Module
"""
super(MSDeformableAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_levels = num_levels
self.num_points = num_points
self.total_points = num_heads * num_levels * num_points
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2,)
self.attention_weights = nn.Linear(embed_dim, self.total_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
self.ms_deformable_attn_core = deformable_attention_core_func
self._reset_parameters()
def _reset_parameters(self):
# sampling_offsets
init.constant_(self.sampling_offsets.weight, 0)
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
grid_init = grid_init.reshape(self.num_heads, 1, 1, 2).tile([1, self.num_levels, self.num_points, 1])
scaling = torch.arange(1, self.num_points + 1, dtype=torch.float32).reshape(1, 1, -1, 1)
grid_init *= scaling
self.sampling_offsets.bias.data[...] = grid_init.flatten()
# attention_weights
init.constant_(self.attention_weights.weight, 0)
init.constant_(self.attention_weights.bias, 0)
# proj
init.xavier_uniform_(self.value_proj.weight)
init.constant_(self.value_proj.bias, 0)
init.xavier_uniform_(self.output_proj.weight)
init.constant_(self.output_proj.bias, 0)
def forward(self,
query,
reference_points,
value,
value_spatial_shapes,
value_mask=None):
"""
Args:
query (Tensor): [bs, query_length, C]
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area
value (Tensor): [bs, value_length, C]
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
Returns:
output (Tensor): [bs, Length_{query}, C]
"""
bs, Len_q = query.shape[:2]
Len_v = value.shape[1]
value = self.value_proj(value)
if value_mask is not None:
value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
value *= value_mask
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)
sampling_offsets = self.sampling_offsets(query).reshape(
bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2)
attention_weights = self.attention_weights(query).reshape(
bs, Len_q, self.num_heads, self.num_levels * self.num_points)
attention_weights = F.softmax(attention_weights, dim=-1).reshape(
bs, Len_q, self.num_heads, self.num_levels, self.num_points)
if reference_points.shape[-1] == 2:
offset_normalizer = torch.tensor(value_spatial_shapes)
offset_normalizer = offset_normalizer.flip([1]).reshape(
1, 1, 1, self.num_levels, 1, 2)
sampling_locations = reference_points.reshape(
bs, Len_q, 1, self.num_levels, 1, 2
) + sampling_offsets / offset_normalizer
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2] + sampling_offsets /
self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5)
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".
format(reference_points.shape[-1]))
output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self,
d_model=256,
n_head=8,
dim_feedforward=1024,
dropout=0.,
activation="relu",
n_levels=4,
n_points=4,
cope='none',):
super(TransformerDecoderLayer, self).__init__()
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# cross attention
self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.activation = getattr(F, activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
if cope == '24':
self.cope = CoPE(24,d_model)
elif cope == '12':
self.cope = CoPE(12,d_model)
else:
self.cope = None
# self._reset_parameters()
# def _reset_parameters(self):
# linear_init_(self.linear1)
# linear_init_(self.linear2)
# xavier_uniform_(self.linear1.weight)
# xavier_uniform_(self.linear2.weight)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
def forward(self,
tgt,
reference_points,
memory,
memory_spatial_shapes,
memory_level_start_index,
attn_mask=None,
memory_mask=None,
query_pos_embed=None):
# self attention
#print(query_pos_embed.shape)
#qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
# mask = torch.tril(torch.ones_like(qk),diagonal=0)
# mask = torch.log(mask)
# query_pos_embed = self.cope(tgt,qk) #position_embedding
# n_tgt = tgt.cpu().detach().numpy()
#itgt = tgt.new_tensor(np.array([sl.pinv(i) for i in n_tgt])) #inv_tgt
# with torch.no_grad():
# try:
# itgt = torch.linalg.pinv(tgt)
# except:
# print('wrong!!')
# itgt = torch.pinverse(tgt.detach().cpu()).cuda()
# print('qk:',qk.shape)
# print('tgt:',tgt.shape)
# print(([email protected](-1,-2)).shape)
# print('ik:',itgt.shape)
# print(torch.round(itgt@tgt))
# print([email protected](-1,-2))
# k = tgt
# q = tgt + ([email protected](-1,-2))
# print((q@(k.transpose(-1,-2))-query_pos_embed))
# if attn_mask is not None:
# attn_mask = torch.where(
# attn_mask.to(torch.bool),
# torch.zeros_like(attn_mask),
# torch.full_like(attn_mask, float('-inf'), dtype=tgt.dtype))
if self.cope == None:
q = k = self.with_pos_embed(tgt, query_pos_embed)
else:
qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
query_pos_embed = self.cope(tgt,qk)
with torch.no_grad():
try:
itgt = torch.linalg.pinv(tgt)
except:
print('wrong!!')
itgt = torch.pinverse(tgt.detach().cpu()).cuda()
k = tgt
q = tgt + ([email protected](-1,-2))
tgt2, _ = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# cross attention
if self.cope:
tgt2 = self.cross_attn(\
self.with_pos_embed(tgt, [email protected](-1,-2)),#([email protected](-1,-2))), #self.with_pos_embed(tgt, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
else:
tgt2 = self.cross_attn(\
self.with_pos_embed(tgt, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# ffn
tgt2 = self.forward_ffn(tgt)
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoder(nn.Module):
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
super(TransformerDecoder, self).__init__()
self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)])
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
def forward(self,
tgt,
ref_points_unact,
memory,
memory_spatial_shapes,
memory_level_start_index,
bbox_head,
score_head,
query_pos_head,
attn_mask=None,
memory_mask=None):
output = tgt
dec_out_bboxes = []
dec_out_logits = []
ref_points_detach = F.sigmoid(ref_points_unact)
for i, layer in enumerate(self.layers):
ref_points_input = ref_points_detach.unsqueeze(2)
query_pos_embed = query_pos_head(ref_points_detach)
output = layer(output, ref_points_input, memory,
memory_spatial_shapes, memory_level_start_index,
attn_mask, memory_mask, query_pos_embed)
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
if self.training:
dec_out_logits.append(score_head[i](output))
if i == 0:
dec_out_bboxes.append(inter_ref_bbox)
else:
dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
elif i == self.eval_idx:
dec_out_logits.append(score_head[i](output))
dec_out_bboxes.append(inter_ref_bbox)
break
ref_points = inter_ref_bbox
ref_points_detach = inter_ref_bbox.detach(
) if self.training else inter_ref_bbox
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
@register
class RTDETRTransformer(nn.Module):
__share__ = ['num_classes']
def __init__(self,
num_classes=80,
hidden_dim=256,
num_queries=300,
position_embed_type='sine',
feat_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
num_levels=3,
num_decoder_points=4,
nhead=8,
num_decoder_layers=6,
dim_feedforward=1024,
dropout=0.,
activation="relu",
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
learnt_init_query=False,
eval_spatial_size=None,
eval_idx=-1,
eps=1e-2,
aux_loss=True,
cope='None',):
super(RTDETRTransformer, self).__init__()
assert position_embed_type in ['sine', 'learned'], \
f'ValueError: position_embed_type not supported {position_embed_type}!'
assert len(feat_channels) <= num_levels
assert len(feat_strides) == len(feat_channels)
for _ in range(num_levels - len(feat_strides)):
feat_strides.append(feat_strides[-1] * 2)
self.hidden_dim = hidden_dim
self.nhead = nhead
self.feat_strides = feat_strides
self.num_levels = num_levels
self.num_classes = num_classes
self.num_queries = num_queries
self.eps = eps
self.num_decoder_layers = num_decoder_layers
self.eval_spatial_size = eval_spatial_size
self.aux_loss = aux_loss
# backbone feature projection
self._build_input_proj_layer(feat_channels)
# Transformer module
decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels, num_decoder_points,cope)
self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx)
self.num_denoising = num_denoising
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
# denoising part
if num_denoising > 0:
# self.denoising_class_embed = nn.Embedding(num_classes, hidden_dim, padding_idx=num_classes-1) # TODO for load paddle weights
self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes)
# decoder embedding
self.learnt_init_query = learnt_init_query
if learnt_init_query:
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
# encoder head
self.enc_output = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim,)
)
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
# decoder head
self.dec_score_head = nn.ModuleList([
nn.Linear(hidden_dim, num_classes)
for _ in range(num_decoder_layers)
])
self.dec_bbox_head = nn.ModuleList([
MLP(hidden_dim, hidden_dim, 4, num_layers=3)
for _ in range(num_decoder_layers)
])
# init encoder output anchors and valid_mask
if self.eval_spatial_size:
self.anchors, self.valid_mask = self._generate_anchors()
self._reset_parameters()
def _reset_parameters(self):
bias = bias_init_with_prob(0.01)
init.constant_(self.enc_score_head.bias, bias)
init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
init.constant_(self.enc_bbox_head.layers[-1].bias, 0)
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
init.constant_(cls_.bias, bias)
init.constant_(reg_.layers[-1].weight, 0)
init.constant_(reg_.layers[-1].bias, 0)
# linear_init_(self.enc_output[0])
init.xavier_uniform_(self.enc_output[0].weight)
if self.learnt_init_query:
init.xavier_uniform_(self.tgt_embed.weight)
init.xavier_uniform_(self.query_pos_head.layers[0].weight)
init.xavier_uniform_(self.query_pos_head.layers[1].weight)
def _build_input_proj_layer(self, feat_channels):
self.input_proj = nn.ModuleList()
for in_channels in feat_channels:
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim,))])
)
)
in_channels = feat_channels[-1]
for _ in range(self.num_levels - len(feat_channels)):
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim))])
)
)
in_channels = self.hidden_dim
def _get_encoder_input(self, feats):
# get projection features
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
if self.num_levels > len(proj_feats):
len_srcs = len(proj_feats)
for i in range(len_srcs, self.num_levels):
if i == len_srcs:
proj_feats.append(self.input_proj[i](feats[-1]))
else:
proj_feats.append(self.input_proj[i](proj_feats[-1]))
# get encoder inputs
feat_flatten = []
spatial_shapes = []
level_start_index = [0, ]
for i, feat in enumerate(proj_feats):
_, _, h, w = feat.shape
# [b, c, h, w] -> [b, h*w, c]
feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
# [num_levels, 2]
spatial_shapes.append([h, w])
# [l], start index of each level
level_start_index.append(h * w + level_start_index[-1])
# [b, l, c]
feat_flatten = torch.concat(feat_flatten, 1)
level_start_index.pop()
return (feat_flatten, spatial_shapes, level_start_index)
def _generate_anchors(self,
spatial_shapes=None,
grid_size=0.05,
dtype=torch.float32,
device='cpu'):
if spatial_shapes is None:
spatial_shapes = [[int(self.eval_spatial_size[0] / s), int(self.eval_spatial_size[1] / s)]
for s in self.feat_strides
]
anchors = []
for lvl, (h, w) in enumerate(spatial_shapes):
grid_y, grid_x = torch.meshgrid(\
torch.arange(end=h, dtype=dtype), \
torch.arange(end=w, dtype=dtype), indexing='ij')
grid_xy = torch.stack([grid_x, grid_y], -1)
valid_WH = torch.tensor([w, h]).to(dtype)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, h * w, 4))
anchors = torch.concat(anchors, 1).to(device)
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
anchors = torch.log(anchors / (1 - anchors))
# anchors = torch.where(valid_mask, anchors, float('inf'))
# anchors[valid_mask] = torch.inf # valid_mask [1, 8400, 1]
anchors = torch.where(valid_mask, anchors, torch.inf)
return anchors, valid_mask
def _get_decoder_input(self,
memory,
spatial_shapes,
denoising_class=None,
denoising_bbox_unact=None):
bs, _, _ = memory.shape
# prepare input for decoder
if self.training or self.eval_spatial_size is None:
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device)
else:
anchors, valid_mask = self.anchors.to(memory.device), self.valid_mask.to(memory.device)
# memory = torch.where(valid_mask, memory, 0)
memory = valid_mask.to(memory.dtype) * memory # TODO fix type error for onnx export
output_memory = self.enc_output(memory)
enc_outputs_class = self.enc_score_head(output_memory)
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1)
reference_points_unact = enc_outputs_coord_unact.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1]))
enc_topk_bboxes = F.sigmoid(reference_points_unact)
if denoising_bbox_unact is not None:
reference_points_unact = torch.concat(
[denoising_bbox_unact, reference_points_unact], 1)
enc_topk_logits = enc_outputs_class.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1]))
# extract region features
if self.learnt_init_query:
target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
else:
target = output_memory.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
target = target.detach()
if denoising_class is not None:
target = torch.concat([denoising_class, target], 1)
return target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits
def forward(self, feats, targets=None):
# input projection and embedding
(memory, spatial_shapes, level_start_index) = self._get_encoder_input(feats)
# prepare denoising training
if self.training and self.num_denoising > 0:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
get_contrastive_denoising_training_group(targets, \
self.num_classes,
self.num_queries,
self.denoising_class_embed,
num_denoising=self.num_denoising,
label_noise_ratio=self.label_noise_ratio,
box_noise_scale=self.box_noise_scale, )
else:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact)
# decoder
out_bboxes, out_logits = self.decoder(
target,
init_ref_points_unact,
memory,
spatial_shapes,
level_start_index,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask)
if self.training and dn_meta is not None:
dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2)
dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2)
out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]}
if self.training and self.aux_loss:
out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1])
out['aux_outputs'].extend(self._set_aux_loss([enc_topk_logits], [enc_topk_bboxes]))
if self.training and dn_meta is not None:
out['dn_aux_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes)
out['dn_meta'] = dn_meta
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class, outputs_coord)]
|