File size: 25,948 Bytes
7ac818a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
"""by lyuwenyu
"""

import math 
import copy 
from collections import OrderedDict
from typing import Optional, Tuple

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.nn.init as init 
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
import torch.linalg

from .denoising import get_contrastive_denoising_training_group
from .utils import deformable_attention_core_func, get_activation, inverse_sigmoid
from .utils import bias_init_with_prob
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear

from src.core import register

import numpy as np

import scipy.linalg as sl

__all__ = ['RTDETRTransformer']



class MLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
        self.act = nn.Identity() if act is None else get_activation(act)

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


class CoPE(nn.Module):
    def __init__(self,npos_max,head_dim):
        super(CoPE, self).__init__()
        self.npos_max = npos_max                  #?
        self.pos_emb = nn.parameter.Parameter(torch.zeros(1,head_dim,npos_max))

    def forward(self,query,attn_logits):
        #compute positions
        gates = torch.sigmoid(attn_logits)                     #sig(qk)
        pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
        pos = pos.clamp(max=self.npos_max-1)
        #interpolate from integer positions
        pos_ceil = pos.ceil().long()
        pos_floor = pos.floor().long()                  
        logits_int = torch.matmul(query,self.pos_emb)
        logits_ceil = logits_int.gather(-1,pos_ceil)
        logits_floor = logits_int.gather(-1,pos_floor)
        w = pos-pos_floor
        return logits_ceil*w+logits_floor*(1-w)




class MSDeformableAttention(nn.Module):
    def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4,):
        """
        Multi-Scale Deformable Attention Module
        """
        super(MSDeformableAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.num_levels = num_levels
        self.num_points = num_points
        self.total_points = num_heads * num_levels * num_points

        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2,)
        self.attention_weights = nn.Linear(embed_dim, self.total_points)
        self.value_proj = nn.Linear(embed_dim, embed_dim)
        self.output_proj = nn.Linear(embed_dim, embed_dim)

        self.ms_deformable_attn_core = deformable_attention_core_func

        self._reset_parameters()


    def _reset_parameters(self):
        # sampling_offsets
        init.constant_(self.sampling_offsets.weight, 0)
        thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
        grid_init = grid_init.reshape(self.num_heads, 1, 1, 2).tile([1, self.num_levels, self.num_points, 1])
        scaling = torch.arange(1, self.num_points + 1, dtype=torch.float32).reshape(1, 1, -1, 1)
        grid_init *= scaling
        self.sampling_offsets.bias.data[...] = grid_init.flatten()

        # attention_weights
        init.constant_(self.attention_weights.weight, 0)
        init.constant_(self.attention_weights.bias, 0)

        # proj
        init.xavier_uniform_(self.value_proj.weight)
        init.constant_(self.value_proj.bias, 0)
        init.xavier_uniform_(self.output_proj.weight)
        init.constant_(self.output_proj.bias, 0)


    def forward(self,
                query,
                reference_points,
                value,
                value_spatial_shapes,
                value_mask=None):
        """
        Args:
            query (Tensor): [bs, query_length, C]
            reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
                bottom-right (1, 1), including padding area
            value (Tensor): [bs, value_length, C]
            value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
            value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
            value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements

        Returns:
            output (Tensor): [bs, Length_{query}, C]
        """
        bs, Len_q = query.shape[:2]
        Len_v = value.shape[1]

        value = self.value_proj(value)
        if value_mask is not None:
            value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
            value *= value_mask
        value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)

        sampling_offsets = self.sampling_offsets(query).reshape(
            bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2)
        attention_weights = self.attention_weights(query).reshape(
            bs, Len_q, self.num_heads, self.num_levels * self.num_points)
        attention_weights = F.softmax(attention_weights, dim=-1).reshape(
            bs, Len_q, self.num_heads, self.num_levels, self.num_points)

        if reference_points.shape[-1] == 2:
            offset_normalizer = torch.tensor(value_spatial_shapes)
            offset_normalizer = offset_normalizer.flip([1]).reshape(
                1, 1, 1, self.num_levels, 1, 2)
            sampling_locations = reference_points.reshape(
                bs, Len_q, 1, self.num_levels, 1, 2
            ) + sampling_offsets / offset_normalizer
        elif reference_points.shape[-1] == 4:
            sampling_locations = (
                reference_points[:, :, None, :, None, :2] + sampling_offsets /
                self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5)
        else:
            raise ValueError(
                "Last dim of reference_points must be 2 or 4, but get {} instead.".
                format(reference_points.shape[-1]))

        output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights)

        output = self.output_proj(output)

        return output


class TransformerDecoderLayer(nn.Module):
    def __init__(self,
                 d_model=256,
                 n_head=8,
                 dim_feedforward=1024,
                 dropout=0.,
                 activation="relu",
                 n_levels=4,
                 n_points=4,
                 cope='none',):
        super(TransformerDecoderLayer, self).__init__()

        # self attention
        self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # cross attention
        self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.activation = getattr(F, activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)
        
        if cope == '24':
          self.cope = CoPE(24,d_model)
        elif cope == '12':
          self.cope = CoPE(12,d_model)
        else: 
          self.cope = None
        
        # self._reset_parameters()

    # def _reset_parameters(self):
    #     linear_init_(self.linear1)
    #     linear_init_(self.linear2)
    #     xavier_uniform_(self.linear1.weight)
    #     xavier_uniform_(self.linear2.weight)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))

    def forward(self,
                tgt,
                reference_points,
                memory,
                memory_spatial_shapes,
                memory_level_start_index,
                attn_mask=None,
                memory_mask=None,
                query_pos_embed=None):
        # self attention
        #print(query_pos_embed.shape)
        #qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
       # mask = torch.tril(torch.ones_like(qk),diagonal=0)
       # mask = torch.log(mask)
       # query_pos_embed = self.cope(tgt,qk)                                         #position_embedding
 
        
       # n_tgt = tgt.cpu().detach().numpy()
        
        #itgt = tgt.new_tensor(np.array([sl.pinv(i) for i in n_tgt]))                        #inv_tgt
        
#        with torch.no_grad():
#          try:
#            itgt = torch.linalg.pinv(tgt)
#          except:
#            print('wrong!!')
#            itgt = torch.pinverse(tgt.detach().cpu()).cuda()
#        print('qk:',qk.shape)
#        print('tgt:',tgt.shape)
#        print(([email protected](-1,-2)).shape)
#        print('ik:',itgt.shape)

     #   print(torch.round(itgt@tgt))
     #   print([email protected](-1,-2))

      #  k = tgt 
      #  q = tgt + ([email protected](-1,-2))
        
     #   print((q@(k.transpose(-1,-2))-query_pos_embed))
        
        # if attn_mask is not None:
        #     attn_mask = torch.where(
        #         attn_mask.to(torch.bool),
        #         torch.zeros_like(attn_mask),
        #         torch.full_like(attn_mask, float('-inf'), dtype=tgt.dtype))
        
        if self.cope == None:
          q = k = self.with_pos_embed(tgt, query_pos_embed)
        else:
          qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
          query_pos_embed = self.cope(tgt,qk)
          with torch.no_grad():
            try:
              itgt = torch.linalg.pinv(tgt)
            except:
              print('wrong!!')
              itgt = torch.pinverse(tgt.detach().cpu()).cuda()
          k = tgt 
          q = tgt + ([email protected](-1,-2))
          
          
        tgt2, _ = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # cross attention
        if self.cope:
          tgt2 = self.cross_attn(\
              self.with_pos_embed(tgt, [email protected](-1,-2)),#([email protected](-1,-2))),  #self.with_pos_embed(tgt, query_pos_embed),
              reference_points, 
              memory, 
              memory_spatial_shapes, 
              memory_mask)
        else:
          tgt2 = self.cross_attn(\
              self.with_pos_embed(tgt, query_pos_embed),
              reference_points, 
              memory, 
              memory_spatial_shapes, 
              memory_mask)

        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # ffn
        tgt2 = self.forward_ffn(tgt)
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)

        return tgt


class TransformerDecoder(nn.Module):
    def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
        super(TransformerDecoder, self).__init__()
        self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)])
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx

    def forward(self,
                tgt,
                ref_points_unact,
                memory,
                memory_spatial_shapes,
                memory_level_start_index,
                bbox_head,
                score_head,
                query_pos_head,
                attn_mask=None,
                memory_mask=None):
        output = tgt
        dec_out_bboxes = []
        dec_out_logits = []
        ref_points_detach = F.sigmoid(ref_points_unact)

        for i, layer in enumerate(self.layers):
            ref_points_input = ref_points_detach.unsqueeze(2)
            query_pos_embed = query_pos_head(ref_points_detach)

            output = layer(output, ref_points_input, memory,
                           memory_spatial_shapes, memory_level_start_index,
                           attn_mask, memory_mask, query_pos_embed)

            inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))

            if self.training:
                dec_out_logits.append(score_head[i](output))
                if i == 0:
                    dec_out_bboxes.append(inter_ref_bbox)
                else:
                    dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))

            elif i == self.eval_idx:
                dec_out_logits.append(score_head[i](output))
                dec_out_bboxes.append(inter_ref_bbox)
                break

            ref_points = inter_ref_bbox
            ref_points_detach = inter_ref_bbox.detach(
            ) if self.training else inter_ref_bbox

        return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)


@register
class RTDETRTransformer(nn.Module):
    __share__ = ['num_classes']
    def __init__(self,
                 num_classes=80,
                 hidden_dim=256,
                 num_queries=300,
                 position_embed_type='sine',
                 feat_channels=[512, 1024, 2048],
                 feat_strides=[8, 16, 32],
                 num_levels=3,
                 num_decoder_points=4,
                 nhead=8,
                 num_decoder_layers=6,
                 dim_feedforward=1024,
                 dropout=0.,
                 activation="relu",
                 num_denoising=100,
                 label_noise_ratio=0.5,
                 box_noise_scale=1.0,
                 learnt_init_query=False,
                 eval_spatial_size=None,
                 eval_idx=-1,
                 eps=1e-2, 
                 aux_loss=True,
                 cope='None',):

        super(RTDETRTransformer, self).__init__()
        assert position_embed_type in ['sine', 'learned'], \
            f'ValueError: position_embed_type not supported {position_embed_type}!'
        assert len(feat_channels) <= num_levels
        assert len(feat_strides) == len(feat_channels)
        for _ in range(num_levels - len(feat_strides)):
            feat_strides.append(feat_strides[-1] * 2)

        self.hidden_dim = hidden_dim
        self.nhead = nhead
        self.feat_strides = feat_strides
        self.num_levels = num_levels
        self.num_classes = num_classes
        self.num_queries = num_queries
        self.eps = eps
        self.num_decoder_layers = num_decoder_layers
        self.eval_spatial_size = eval_spatial_size
        self.aux_loss = aux_loss

        # backbone feature projection
        self._build_input_proj_layer(feat_channels)

        # Transformer module
        decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels, num_decoder_points,cope)
        self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx)

        self.num_denoising = num_denoising
        self.label_noise_ratio = label_noise_ratio
        self.box_noise_scale = box_noise_scale
        # denoising part
        if num_denoising > 0: 
            # self.denoising_class_embed = nn.Embedding(num_classes, hidden_dim, padding_idx=num_classes-1) # TODO for load paddle weights
            self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes)

        # decoder embedding
        self.learnt_init_query = learnt_init_query
        if learnt_init_query:
            self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
        self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)

        # encoder head
        self.enc_output = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim),
            nn.LayerNorm(hidden_dim,)
        )
        self.enc_score_head = nn.Linear(hidden_dim, num_classes)
        self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)

        # decoder head
        self.dec_score_head = nn.ModuleList([
            nn.Linear(hidden_dim, num_classes)
            for _ in range(num_decoder_layers)
        ])
        self.dec_bbox_head = nn.ModuleList([
            MLP(hidden_dim, hidden_dim, 4, num_layers=3)
            for _ in range(num_decoder_layers)
        ])

        # init encoder output anchors and valid_mask
        if self.eval_spatial_size:
            self.anchors, self.valid_mask = self._generate_anchors()

        self._reset_parameters()

    def _reset_parameters(self):
        bias = bias_init_with_prob(0.01)

        init.constant_(self.enc_score_head.bias, bias)
        init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
        init.constant_(self.enc_bbox_head.layers[-1].bias, 0)

        for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
            init.constant_(cls_.bias, bias)
            init.constant_(reg_.layers[-1].weight, 0)
            init.constant_(reg_.layers[-1].bias, 0)
        
        # linear_init_(self.enc_output[0])
        init.xavier_uniform_(self.enc_output[0].weight)
        if self.learnt_init_query:
            init.xavier_uniform_(self.tgt_embed.weight)
        init.xavier_uniform_(self.query_pos_head.layers[0].weight)
        init.xavier_uniform_(self.query_pos_head.layers[1].weight)


    def _build_input_proj_layer(self, feat_channels):
        self.input_proj = nn.ModuleList()
        for in_channels in feat_channels:
            self.input_proj.append(
                nn.Sequential(OrderedDict([
                    ('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)), 
                    ('norm', nn.BatchNorm2d(self.hidden_dim,))])
                )
            )

        in_channels = feat_channels[-1]

        for _ in range(self.num_levels - len(feat_channels)):
            self.input_proj.append(
                nn.Sequential(OrderedDict([
                    ('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)),
                    ('norm', nn.BatchNorm2d(self.hidden_dim))])
                )
            )
            in_channels = self.hidden_dim

    def _get_encoder_input(self, feats):
        # get projection features
        proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
        if self.num_levels > len(proj_feats):
            len_srcs = len(proj_feats)
            for i in range(len_srcs, self.num_levels):
                if i == len_srcs:
                    proj_feats.append(self.input_proj[i](feats[-1]))
                else:
                    proj_feats.append(self.input_proj[i](proj_feats[-1]))

        # get encoder inputs
        feat_flatten = []
        spatial_shapes = []
        level_start_index = [0, ]
        for i, feat in enumerate(proj_feats):
            _, _, h, w = feat.shape
            # [b, c, h, w] -> [b, h*w, c]
            feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
            # [num_levels, 2]
            spatial_shapes.append([h, w])
            # [l], start index of each level
            level_start_index.append(h * w + level_start_index[-1])

        # [b, l, c]
        feat_flatten = torch.concat(feat_flatten, 1)
        level_start_index.pop()
        return (feat_flatten, spatial_shapes, level_start_index)

    def _generate_anchors(self,
                          spatial_shapes=None,
                          grid_size=0.05,
                          dtype=torch.float32,
                          device='cpu'):
        if spatial_shapes is None:
            spatial_shapes = [[int(self.eval_spatial_size[0] / s), int(self.eval_spatial_size[1] / s)]
                for s in self.feat_strides
            ]
        anchors = []
        for lvl, (h, w) in enumerate(spatial_shapes):
            grid_y, grid_x = torch.meshgrid(\
                torch.arange(end=h, dtype=dtype), \
                torch.arange(end=w, dtype=dtype), indexing='ij')
            grid_xy = torch.stack([grid_x, grid_y], -1)
            valid_WH = torch.tensor([w, h]).to(dtype)
            grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
            wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
            anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, h * w, 4))

        anchors = torch.concat(anchors, 1).to(device)
        valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
        anchors = torch.log(anchors / (1 - anchors))
        # anchors = torch.where(valid_mask, anchors, float('inf'))
        # anchors[valid_mask] = torch.inf # valid_mask [1, 8400, 1]
        anchors = torch.where(valid_mask, anchors, torch.inf)

        return anchors, valid_mask


    def _get_decoder_input(self,
                           memory,
                           spatial_shapes,
                           denoising_class=None,
                           denoising_bbox_unact=None):
        bs, _, _ = memory.shape
        # prepare input for decoder
        if self.training or self.eval_spatial_size is None:
            anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device)
        else:
            anchors, valid_mask = self.anchors.to(memory.device), self.valid_mask.to(memory.device)

        # memory = torch.where(valid_mask, memory, 0)
        memory = valid_mask.to(memory.dtype) * memory  # TODO fix type error for onnx export 

        output_memory = self.enc_output(memory)

        enc_outputs_class = self.enc_score_head(output_memory)
        enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors

        _, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1)
        
        reference_points_unact = enc_outputs_coord_unact.gather(dim=1, \
            index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1]))

        enc_topk_bboxes = F.sigmoid(reference_points_unact)
        if denoising_bbox_unact is not None:
            reference_points_unact = torch.concat(
                [denoising_bbox_unact, reference_points_unact], 1)
        
        enc_topk_logits = enc_outputs_class.gather(dim=1, \
            index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1]))

        # extract region features
        if self.learnt_init_query:
            target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
        else:
            target = output_memory.gather(dim=1, \
                index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
            target = target.detach()

        if denoising_class is not None:
            target = torch.concat([denoising_class, target], 1)

        return target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits


    def forward(self, feats, targets=None):

        # input projection and embedding
        (memory, spatial_shapes, level_start_index) = self._get_encoder_input(feats)
        
        # prepare denoising training
        if self.training and self.num_denoising > 0:
            denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
                get_contrastive_denoising_training_group(targets, \
                    self.num_classes, 
                    self.num_queries, 
                    self.denoising_class_embed, 
                    num_denoising=self.num_denoising, 
                    label_noise_ratio=self.label_noise_ratio, 
                    box_noise_scale=self.box_noise_scale, )
        else:
            denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None

        target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
            self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact)

        # decoder
        out_bboxes, out_logits = self.decoder(
            target,
            init_ref_points_unact,
            memory,
            spatial_shapes,
            level_start_index,
            self.dec_bbox_head,
            self.dec_score_head,
            self.query_pos_head,
            attn_mask=attn_mask)

        if self.training and dn_meta is not None:
            dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2)
            dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2)

        out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]}

        if self.training and self.aux_loss:
            out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1])
            out['aux_outputs'].extend(self._set_aux_loss([enc_topk_logits], [enc_topk_bboxes]))
            
            if self.training and dn_meta is not None:
                out['dn_aux_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes)
                out['dn_meta'] = dn_meta

        return out


    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        return [{'pred_logits': a, 'pred_boxes': b}
                for a, b in zip(outputs_class, outputs_coord)]