|
""" |
|
reference: |
|
https://github.com/facebookresearch/detr/blob/main/models/detr.py |
|
|
|
by lyuwenyu |
|
""" |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
|
|
|
|
from .box_ops import box_cxcywh_to_xyxy, box_iou, generalized_box_iou |
|
|
|
from src.misc.dist import get_world_size, is_dist_available_and_initialized |
|
from src.core import register |
|
|
|
|
|
|
|
@register |
|
class SetCriterion(nn.Module): |
|
""" This class computes the loss for DETR. |
|
The process happens in two steps: |
|
1) we compute hungarian assignment between ground truth boxes and the outputs of the model |
|
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) |
|
""" |
|
__share__ = ['num_classes', ] |
|
__inject__ = ['matcher', ] |
|
|
|
def __init__(self, matcher, weight_dict, losses, alpha=0.2, gamma=2.0, eos_coef=1e-4, num_classes=80): |
|
""" Create the criterion. |
|
Parameters: |
|
num_classes: number of object categories, omitting the special no-object category |
|
matcher: module able to compute a matching between targets and proposals |
|
weight_dict: dict containing as key the names of the losses and as values their relative weight. |
|
eos_coef: relative classification weight applied to the no-object category |
|
losses: list of all the losses to be applied. See get_loss for list of available losses. |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.matcher = matcher |
|
self.weight_dict = weight_dict |
|
self.losses = losses |
|
|
|
empty_weight = torch.ones(self.num_classes + 1) |
|
empty_weight[-1] = eos_coef |
|
self.register_buffer('empty_weight', empty_weight) |
|
|
|
self.alpha = alpha |
|
self.gamma = gamma |
|
|
|
|
|
def loss_labels(self, outputs, targets, indices, num_boxes, log=True): |
|
"""Classification loss (NLL) |
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] |
|
""" |
|
assert 'pred_logits' in outputs |
|
src_logits = outputs['pred_logits'] |
|
|
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
|
|
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) |
|
losses = {'loss_ce': loss_ce} |
|
|
|
if log: |
|
|
|
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] |
|
return losses |
|
|
|
def loss_labels_bce(self, outputs, targets, indices, num_boxes, log=True): |
|
src_logits = outputs['pred_logits'] |
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
|
|
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1] |
|
loss = F.binary_cross_entropy_with_logits(src_logits, target * 1., reduction='none') |
|
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes |
|
return {'loss_bce': loss} |
|
|
|
def loss_labels_focal(self, outputs, targets, indices, num_boxes, log=True): |
|
assert 'pred_logits' in outputs |
|
src_logits = outputs['pred_logits'] |
|
|
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
|
|
target = F.one_hot(target_classes, num_classes=self.num_classes+1)[..., :-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = torchvision.ops.sigmoid_focal_loss(src_logits, target, self.alpha, self.gamma, reduction='none') |
|
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes |
|
|
|
return {'loss_focal': loss} |
|
|
|
def loss_labels_vfl(self, outputs, targets, indices, num_boxes, log=True): |
|
assert 'pred_boxes' in outputs |
|
idx = self._get_src_permutation_idx(indices) |
|
|
|
src_boxes = outputs['pred_boxes'][idx] |
|
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) |
|
ious, _ = box_iou(box_cxcywh_to_xyxy(src_boxes), box_cxcywh_to_xyxy(target_boxes)) |
|
ious = torch.diag(ious).detach() |
|
|
|
src_logits = outputs['pred_logits'] |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1] |
|
|
|
target_score_o = torch.zeros_like(target_classes, dtype=src_logits.dtype) |
|
target_score_o[idx] = ious.to(target_score_o.dtype) |
|
target_score = target_score_o.unsqueeze(-1) * target |
|
|
|
pred_score = F.sigmoid(src_logits).detach() |
|
weight = self.alpha * pred_score.pow(self.gamma) * (1 - target) + target_score |
|
|
|
loss = F.binary_cross_entropy_with_logits(src_logits, target_score, weight=weight, reduction='none') |
|
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes |
|
return {'loss_vfl': loss} |
|
|
|
@torch.no_grad() |
|
def loss_cardinality(self, outputs, targets, indices, num_boxes): |
|
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes |
|
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients |
|
""" |
|
pred_logits = outputs['pred_logits'] |
|
device = pred_logits.device |
|
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) |
|
|
|
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) |
|
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) |
|
losses = {'cardinality_error': card_err} |
|
return losses |
|
|
|
def loss_boxes(self, outputs, targets, indices, num_boxes): |
|
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss |
|
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] |
|
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. |
|
""" |
|
assert 'pred_boxes' in outputs |
|
idx = self._get_src_permutation_idx(indices) |
|
src_boxes = outputs['pred_boxes'][idx] |
|
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) |
|
|
|
losses = {} |
|
|
|
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') |
|
losses['loss_bbox'] = loss_bbox.sum() / num_boxes |
|
|
|
loss_giou = 1 - torch.diag(generalized_box_iou( |
|
box_cxcywh_to_xyxy(src_boxes), |
|
box_cxcywh_to_xyxy(target_boxes))) |
|
losses['loss_giou'] = loss_giou.sum() / num_boxes |
|
return losses |
|
|
|
def loss_masks(self, outputs, targets, indices, num_boxes): |
|
"""Compute the losses related to the masks: the focal loss and the dice loss. |
|
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] |
|
""" |
|
assert "pred_masks" in outputs |
|
|
|
src_idx = self._get_src_permutation_idx(indices) |
|
tgt_idx = self._get_tgt_permutation_idx(indices) |
|
src_masks = outputs["pred_masks"] |
|
src_masks = src_masks[src_idx] |
|
masks = [t["masks"] for t in targets] |
|
|
|
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() |
|
target_masks = target_masks.to(src_masks) |
|
target_masks = target_masks[tgt_idx] |
|
|
|
|
|
src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:], |
|
mode="bilinear", align_corners=False) |
|
src_masks = src_masks[:, 0].flatten(1) |
|
|
|
target_masks = target_masks.flatten(1) |
|
target_masks = target_masks.view(src_masks.shape) |
|
losses = { |
|
"loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), |
|
"loss_dice": dice_loss(src_masks, target_masks, num_boxes), |
|
} |
|
return losses |
|
|
|
def _get_src_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) |
|
src_idx = torch.cat([src for (src, _) in indices]) |
|
return batch_idx, src_idx |
|
|
|
def _get_tgt_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) |
|
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) |
|
return batch_idx, tgt_idx |
|
|
|
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): |
|
loss_map = { |
|
'labels': self.loss_labels, |
|
'cardinality': self.loss_cardinality, |
|
'boxes': self.loss_boxes, |
|
'masks': self.loss_masks, |
|
|
|
'bce': self.loss_labels_bce, |
|
'focal': self.loss_labels_focal, |
|
'vfl': self.loss_labels_vfl, |
|
} |
|
assert loss in loss_map, f'do you really want to compute {loss} loss?' |
|
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) |
|
|
|
def forward(self, outputs, targets): |
|
""" This performs the loss computation. |
|
Parameters: |
|
outputs: dict of tensors, see the output specification of the model for the format |
|
targets: list of dicts, such that len(targets) == batch_size. |
|
The expected keys in each dict depends on the losses applied, see each loss' doc |
|
""" |
|
outputs_without_aux = {k: v for k, v in outputs.items() if 'aux' not in k} |
|
|
|
|
|
indices = self.matcher(outputs_without_aux, targets) |
|
|
|
|
|
num_boxes = sum(len(t["labels"]) for t in targets) |
|
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) |
|
if is_dist_available_and_initialized(): |
|
torch.distributed.all_reduce(num_boxes) |
|
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() |
|
|
|
|
|
losses = {} |
|
for loss in self.losses: |
|
l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes) |
|
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} |
|
losses.update(l_dict) |
|
|
|
|
|
if 'aux_outputs' in outputs: |
|
for i, aux_outputs in enumerate(outputs['aux_outputs']): |
|
indices = self.matcher(aux_outputs, targets) |
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs = {'log': False} |
|
|
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) |
|
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} |
|
l_dict = {k + f'_aux_{i}': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
|
|
if 'dn_aux_outputs' in outputs: |
|
assert 'dn_meta' in outputs, '' |
|
indices = self.get_cdn_matched_indices(outputs['dn_meta'], targets) |
|
num_boxes = num_boxes * outputs['dn_meta']['dn_num_group'] |
|
|
|
for i, aux_outputs in enumerate(outputs['dn_aux_outputs']): |
|
|
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs = {'log': False} |
|
|
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) |
|
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} |
|
l_dict = {k + f'_dn_{i}': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
return losses |
|
|
|
@staticmethod |
|
def get_cdn_matched_indices(dn_meta, targets): |
|
'''get_cdn_matched_indices |
|
''' |
|
dn_positive_idx, dn_num_group = dn_meta["dn_positive_idx"], dn_meta["dn_num_group"] |
|
num_gts = [len(t['labels']) for t in targets] |
|
device = targets[0]['labels'].device |
|
|
|
dn_match_indices = [] |
|
for i, num_gt in enumerate(num_gts): |
|
if num_gt > 0: |
|
gt_idx = torch.arange(num_gt, dtype=torch.int64, device=device) |
|
gt_idx = gt_idx.tile(dn_num_group) |
|
assert len(dn_positive_idx[i]) == len(gt_idx) |
|
dn_match_indices.append((dn_positive_idx[i], gt_idx)) |
|
else: |
|
dn_match_indices.append((torch.zeros(0, dtype=torch.int64, device=device), \ |
|
torch.zeros(0, dtype=torch.int64, device=device))) |
|
|
|
return dn_match_indices |
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the precision@k for the specified values of k""" |
|
if target.numel() == 0: |
|
return [torch.zeros([], device=output.device)] |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].view(-1).float().sum(0) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|
|
|
|
|
|
|
|
|