File size: 15,622 Bytes
e8861c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
reference: 
https://github.com/facebookresearch/detr/blob/main/models/detr.py

by lyuwenyu
"""


import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision

# from torchvision.ops import box_convert, generalized_box_iou
from .box_ops import box_cxcywh_to_xyxy, box_iou, generalized_box_iou

from src.misc.dist import get_world_size, is_dist_available_and_initialized
from src.core import register



@register
class SetCriterion(nn.Module):
    """ This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """
    __share__ = ['num_classes', ]
    __inject__ = ['matcher', ]

    def __init__(self, matcher, weight_dict, losses, alpha=0.2, gamma=2.0, eos_coef=1e-4, num_classes=80):
        """ Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.losses = losses 

        empty_weight = torch.ones(self.num_classes + 1)
        empty_weight[-1] = eos_coef
        self.register_buffer('empty_weight', empty_weight)

        self.alpha = alpha
        self.gamma = gamma


    def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
        losses = {'loss_ce': loss_ce}

        if log:
            # TODO this should probably be a separate loss, not hacked in this one here
            losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
        return losses

    def loss_labels_bce(self, outputs, targets, indices, num_boxes, log=True):
        src_logits = outputs['pred_logits']
        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
        loss = F.binary_cross_entropy_with_logits(src_logits, target * 1., reduction='none')
        loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
        return {'loss_bce': loss}

    def loss_labels_focal(self, outputs, targets, indices, num_boxes, log=True):
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        target = F.one_hot(target_classes, num_classes=self.num_classes+1)[..., :-1]
        # ce_loss = F.binary_cross_entropy_with_logits(src_logits, target * 1., reduction="none")
        # prob = F.sigmoid(src_logits) # TODO .detach()
        # p_t = prob * target + (1 - prob) * (1 - target)
        # alpha_t = self.alpha * target + (1 - self.alpha) * (1 - target)
        # loss = alpha_t * ce_loss * ((1 - p_t) ** self.gamma)
        # loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
        loss = torchvision.ops.sigmoid_focal_loss(src_logits, target, self.alpha, self.gamma, reduction='none')
        loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes

        return {'loss_focal': loss}

    def loss_labels_vfl(self, outputs, targets, indices, num_boxes, log=True):
        assert 'pred_boxes' in outputs
        idx = self._get_src_permutation_idx(indices)

        src_boxes = outputs['pred_boxes'][idx]
        target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
        ious, _ = box_iou(box_cxcywh_to_xyxy(src_boxes), box_cxcywh_to_xyxy(target_boxes))
        ious = torch.diag(ious).detach()

        src_logits = outputs['pred_logits']
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o
        target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]

        target_score_o = torch.zeros_like(target_classes, dtype=src_logits.dtype)
        target_score_o[idx] = ious.to(target_score_o.dtype)
        target_score = target_score_o.unsqueeze(-1) * target

        pred_score = F.sigmoid(src_logits).detach()
        weight = self.alpha * pred_score.pow(self.gamma) * (1 - target) + target_score
        
        loss = F.binary_cross_entropy_with_logits(src_logits, target_score, weight=weight, reduction='none')
        loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
        return {'loss_vfl': loss}

    @torch.no_grad()
    def loss_cardinality(self, outputs, targets, indices, num_boxes):
        """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
        This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
        """
        pred_logits = outputs['pred_logits']
        device = pred_logits.device
        tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
        # Count the number of predictions that are NOT "no-object" (which is the last class)
        card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
        card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
        losses = {'cardinality_error': card_err}
        return losses

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
           targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
           The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        assert 'pred_boxes' in outputs
        idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs['pred_boxes'][idx]
        target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)

        losses = {}

        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
        losses['loss_bbox'] = loss_bbox.sum() / num_boxes

        loss_giou = 1 - torch.diag(generalized_box_iou(
                box_cxcywh_to_xyxy(src_boxes),
                box_cxcywh_to_xyxy(target_boxes)))
        losses['loss_giou'] = loss_giou.sum() / num_boxes
        return losses

    def loss_masks(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the masks: the focal loss and the dice loss.
           targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
        """
        assert "pred_masks" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)
        src_masks = outputs["pred_masks"]
        src_masks = src_masks[src_idx]
        masks = [t["masks"] for t in targets]
        # TODO use valid to mask invalid areas due to padding in loss
        target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
        target_masks = target_masks.to(src_masks)
        target_masks = target_masks[tgt_idx]

        # upsample predictions to the target size
        src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:],
                                mode="bilinear", align_corners=False)
        src_masks = src_masks[:, 0].flatten(1)

        target_masks = target_masks.flatten(1)
        target_masks = target_masks.view(src_masks.shape)
        losses = {
            "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes),
            "loss_dice": dice_loss(src_masks, target_masks, num_boxes),
        }
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
        loss_map = {
            'labels': self.loss_labels,
            'cardinality': self.loss_cardinality,
            'boxes': self.loss_boxes,
            'masks': self.loss_masks,

            'bce': self.loss_labels_bce,
            'focal': self.loss_labels_focal,
            'vfl': self.loss_labels_vfl,
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)

    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if 'aux' not in k}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_available_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes)
            l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
            losses.update(l_dict)

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}

                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
                    l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
                    l_dict = {k + f'_aux_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        # In case of cdn auxiliary losses. For rtdetr
        if 'dn_aux_outputs' in outputs:
            assert 'dn_meta' in outputs, ''
            indices = self.get_cdn_matched_indices(outputs['dn_meta'], targets)
            num_boxes = num_boxes * outputs['dn_meta']['dn_num_group']

            for i, aux_outputs in enumerate(outputs['dn_aux_outputs']):
                # indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}

                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
                    l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
                    l_dict = {k + f'_dn_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses

    @staticmethod
    def get_cdn_matched_indices(dn_meta, targets):
        '''get_cdn_matched_indices
        '''
        dn_positive_idx, dn_num_group = dn_meta["dn_positive_idx"], dn_meta["dn_num_group"]
        num_gts = [len(t['labels']) for t in targets]
        device = targets[0]['labels'].device
        
        dn_match_indices = []
        for i, num_gt in enumerate(num_gts):
            if num_gt > 0:
                gt_idx = torch.arange(num_gt, dtype=torch.int64, device=device)
                gt_idx = gt_idx.tile(dn_num_group)
                assert len(dn_positive_idx[i]) == len(gt_idx)
                dn_match_indices.append((dn_positive_idx[i], gt_idx))
            else:
                dn_match_indices.append((torch.zeros(0, dtype=torch.int64, device=device), \
                    torch.zeros(0, dtype=torch.int64,  device=device)))
        
        return dn_match_indices





@torch.no_grad()
def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    if target.numel() == 0:
        return [torch.zeros([], device=output.device)]
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res