Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import transformers | |
from transformers import XGLMConfig, XGLMTokenizer, is_flax_available, is_torch_available | |
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, require_sentencepiece, slow | |
from ...generation.test_flax_utils import FlaxGenerationTesterMixin | |
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
if is_flax_available(): | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from transformers.modeling_flax_pytorch_utils import ( | |
convert_pytorch_state_dict_to_flax, | |
load_flax_weights_in_pytorch_model, | |
) | |
from transformers.models.xglm.modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel | |
if is_torch_available(): | |
import torch | |
class FlaxXGLMModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
d_model=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
ffn_dim=37, | |
activation_function="gelu", | |
activation_dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = d_model | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.ffn_dim = ffn_dim | |
self.activation_function = activation_function | |
self.activation_dropout = activation_dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = None | |
self.bos_token_id = 0 | |
self.eos_token_id = 2 | |
self.pad_token_id = 1 | |
def prepare_config_and_inputs(self): | |
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 3, self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = XGLMConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
num_layers=self.num_hidden_layers, | |
attention_heads=self.num_attention_heads, | |
ffn_dim=self.ffn_dim, | |
activation_function=self.activation_function, | |
activation_dropout=self.activation_dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
) | |
return (config, input_ids, input_mask) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, attention_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_decoder(self): | |
config, input_ids, attention_mask = self.prepare_config_and_inputs() | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): | |
max_decoder_length = 20 | |
model = model_class_name(config) | |
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) | |
attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") | |
position_ids = jnp.broadcast_to( | |
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) | |
) | |
outputs_cache = model( | |
input_ids[:, :-1], | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
position_ids=position_ids, | |
) | |
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") | |
outputs_cache_next = model( | |
input_ids[:, -1:], | |
attention_mask=attention_mask, | |
past_key_values=outputs_cache.past_key_values, | |
position_ids=position_ids, | |
) | |
outputs = model(input_ids) | |
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) | |
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") | |
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): | |
max_decoder_length = 20 | |
model = model_class_name(config) | |
attention_mask_cache = jnp.concatenate( | |
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], | |
axis=-1, | |
) | |
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) | |
position_ids = jnp.broadcast_to( | |
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) | |
) | |
outputs_cache = model( | |
input_ids[:, :-1], | |
attention_mask=attention_mask_cache, | |
past_key_values=past_key_values, | |
position_ids=position_ids, | |
) | |
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") | |
outputs_cache_next = model( | |
input_ids[:, -1:], | |
past_key_values=outputs_cache.past_key_values, | |
attention_mask=attention_mask_cache, | |
position_ids=position_ids, | |
) | |
outputs = model(input_ids, attention_mask=attention_mask) | |
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) | |
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") | |
class FlaxXGLMModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): | |
all_model_classes = (FlaxXGLMModel, FlaxXGLMForCausalLM) if is_flax_available() else () | |
all_generative_model_classes = (FlaxXGLMForCausalLM,) if is_flax_available() else () | |
def setUp(self): | |
self.model_tester = FlaxXGLMModelTester(self) | |
def test_use_cache_forward(self): | |
for model_class_name in self.all_model_classes: | |
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) | |
def test_use_cache_forward_with_attn_mask(self): | |
for model_class_name in self.all_model_classes: | |
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_use_cache_forward_with_attn_mask( | |
model_class_name, config, input_ids, attention_mask | |
) | |
def test_batch_generation(self): | |
tokenizer = XGLMTokenizer.from_pretrained("XGLM", padding_side="left") | |
inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True) | |
model = FlaxXGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
model.config.num_beams = 1 | |
model.config.do_sample = False | |
jit_generate = jax.jit(model.generate) | |
output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences | |
output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True) | |
expected_string = [ | |
"Hello this is a long string of questions, but I'm not sure if I'm", | |
"Hey, I'm a newbie to the forum and I'", | |
] | |
self.assertListEqual(output_string, expected_string) | |
# overwrite from common since `attention_mask` in combination | |
# with `causal_mask` behaves slighly differently | |
def test_equivalence_pt_to_flax(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
# prepare inputs | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} | |
# load corresponding PyTorch class | |
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
batch_size, seq_length = pt_inputs["input_ids"].shape | |
rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
pt_inputs["attention_mask"][batch_idx, :start_index] = 0 | |
pt_inputs["attention_mask"][batch_idx, start_index:] = 1 | |
prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 | |
prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 | |
pt_model = pt_model_class(config).eval() | |
# Flax models don't use the `use_cache` option and cache is not returned as a default. | |
# So we disable `use_cache` here for PyTorch model. | |
pt_model.config.use_cache = False | |
fx_model = model_class(config, dtype=jnp.float32) | |
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) | |
fx_model.params = fx_state | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs).to_tuple() | |
fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() | |
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
for fx_output, pt_output in zip(fx_outputs, pt_outputs): | |
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pt_model.save_pretrained(tmpdirname) | |
fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) | |
fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() | |
self.assertEqual( | |
len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" | |
) | |
for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs): | |
self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2) | |
# overwrite from common since `attention_mask` in combination | |
# with `causal_mask` behaves slighly differently | |
def test_equivalence_flax_to_pt(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
# prepare inputs | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} | |
# load corresponding PyTorch class | |
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
pt_model = pt_model_class(config).eval() | |
pt_model.config.use_cache = False | |
fx_model = model_class(config, dtype=jnp.float32) | |
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) | |
batch_size, seq_length = pt_inputs["input_ids"].shape | |
rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
pt_inputs["attention_mask"][batch_idx, :start_index] = 0 | |
pt_inputs["attention_mask"][batch_idx, start_index:] = 1 | |
prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 | |
prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 | |
# make sure weights are tied in PyTorch | |
pt_model.tie_weights() | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs).to_tuple() | |
fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() | |
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
for fx_output, pt_output in zip(fx_outputs, pt_outputs): | |
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
fx_model.save_pretrained(tmpdirname) | |
pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) | |
with torch.no_grad(): | |
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() | |
self.assertEqual( | |
len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" | |
) | |
for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded): | |
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) | |
def test_model_from_pretrained(self): | |
for model_class_name in self.all_model_classes: | |
model = model_class_name.from_pretrained("facebook/xglm-564M") | |
outputs = model(np.ones((1, 1))) | |
self.assertIsNotNone(outputs) | |