File size: 15,303 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

import transformers
from transformers import XGLMConfig, XGLMTokenizer, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, require_sentencepiece, slow

from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask


if is_flax_available():
    import jax
    import jax.numpy as jnp
    import numpy as np

    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )
    from transformers.models.xglm.modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel


if is_torch_available():
    import torch


@require_flax
class FlaxXGLMModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        d_model=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        ffn_dim=37,
        activation_function="gelu",
        activation_dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = d_model
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.ffn_dim = ffn_dim
        self.activation_function = activation_function
        self.activation_dropout = activation_dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = None
        self.bos_token_id = 0
        self.eos_token_id = 2
        self.pad_token_id = 1

    def prepare_config_and_inputs(self):
        input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 3, self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = XGLMConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            num_layers=self.num_hidden_layers,
            attention_heads=self.num_attention_heads,
            ffn_dim=self.ffn_dim,
            activation_function=self.activation_function,
            activation_dropout=self.activation_dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
        )

        return (config, input_ids, input_mask)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
        return config, inputs_dict

    def prepare_config_and_inputs_for_decoder(self):
        config, input_ids, attention_mask = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            attention_mask,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask):
        max_decoder_length = 20
        model = model_class_name(config)

        past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
        attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4")

        position_ids = jnp.broadcast_to(
            jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
        )
        outputs_cache = model(
            input_ids[:, :-1],
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )

        position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
        outputs_cache_next = model(
            input_ids[:, -1:],
            attention_mask=attention_mask,
            past_key_values=outputs_cache.past_key_values,
            position_ids=position_ids,
        )

        outputs = model(input_ids)

        diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
        self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")

    def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask):
        max_decoder_length = 20
        model = model_class_name(config)

        attention_mask_cache = jnp.concatenate(
            [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))],
            axis=-1,
        )

        past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
        position_ids = jnp.broadcast_to(
            jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
        )

        outputs_cache = model(
            input_ids[:, :-1],
            attention_mask=attention_mask_cache,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )
        position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
        outputs_cache_next = model(
            input_ids[:, -1:],
            past_key_values=outputs_cache.past_key_values,
            attention_mask=attention_mask_cache,
            position_ids=position_ids,
        )

        outputs = model(input_ids, attention_mask=attention_mask)
        diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
        self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")


@require_sentencepiece
@require_flax
class FlaxXGLMModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
    all_model_classes = (FlaxXGLMModel, FlaxXGLMForCausalLM) if is_flax_available() else ()
    all_generative_model_classes = (FlaxXGLMForCausalLM,) if is_flax_available() else ()

    def setUp(self):
        self.model_tester = FlaxXGLMModelTester(self)

    def test_use_cache_forward(self):
        for model_class_name in self.all_model_classes:
            config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
            self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask)

    def test_use_cache_forward_with_attn_mask(self):
        for model_class_name in self.all_model_classes:
            config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
            self.model_tester.check_use_cache_forward_with_attn_mask(
                model_class_name, config, input_ids, attention_mask
            )

    @slow
    def test_batch_generation(self):
        tokenizer = XGLMTokenizer.from_pretrained("XGLM", padding_side="left")
        inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True)

        model = FlaxXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
        model.config.num_beams = 1
        model.config.do_sample = False

        jit_generate = jax.jit(model.generate)

        output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences

        output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)

        expected_string = [
            "Hello this is a long string of questions, but I'm not sure if I'm",
            "Hey, I'm a newbie to the forum and I'",
        ]

        self.assertListEqual(output_string, expected_string)

    # overwrite from common since `attention_mask` in combination
    # with `causal_mask` behaves slighly differently
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # prepare inputs
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}

                # load corresponding PyTorch class
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

                batch_size, seq_length = pt_inputs["input_ids"].shape
                rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,))
                for batch_idx, start_index in enumerate(rnd_start_indices):
                    pt_inputs["attention_mask"][batch_idx, :start_index] = 0
                    pt_inputs["attention_mask"][batch_idx, start_index:] = 1
                    prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0
                    prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1
                pt_model = pt_model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
                fx_model = model_class(config, dtype=jnp.float32)
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
                    self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2)

    # overwrite from common since `attention_mask` in combination
    # with `causal_mask` behaves slighly differently
    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # prepare inputs
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}

                # load corresponding PyTorch class
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

                pt_model = pt_model_class(config).eval()
                pt_model.config.use_cache = False
                fx_model = model_class(config, dtype=jnp.float32)

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
                batch_size, seq_length = pt_inputs["input_ids"].shape
                rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,))
                for batch_idx, start_index in enumerate(rnd_start_indices):
                    pt_inputs["attention_mask"][batch_idx, :start_index] = 0
                    pt_inputs["attention_mask"][batch_idx, start_index:] = 1
                    prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0
                    prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
                    self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2)

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("facebook/xglm-564M")
            outputs = model(np.ones((1, 1)))
            self.assertIsNotNone(outputs)