Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch REALM model. """ | |
import copy | |
import unittest | |
import numpy as np | |
from transformers import RealmConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
RealmEmbedder, | |
RealmForOpenQA, | |
RealmKnowledgeAugEncoder, | |
RealmReader, | |
RealmRetriever, | |
RealmScorer, | |
RealmTokenizer, | |
) | |
class RealmModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
retriever_proj_size=128, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
span_hidden_size=50, | |
max_span_width=10, | |
reader_layer_norm_eps=1e-3, | |
reader_beam_size=4, | |
reader_seq_len=288 + 32, | |
num_block_records=13353718, | |
searcher_beam_size=8, | |
searcher_seq_len=64, | |
num_labels=3, | |
num_choices=4, | |
num_candidates=10, | |
scope=None, | |
): | |
# General config | |
self.parent = parent | |
self.batch_size = batch_size | |
self.retriever_proj_size = retriever_proj_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
# Reader config | |
self.span_hidden_size = span_hidden_size | |
self.max_span_width = max_span_width | |
self.reader_layer_norm_eps = reader_layer_norm_eps | |
self.reader_beam_size = reader_beam_size | |
self.reader_seq_len = reader_seq_len | |
# Searcher config | |
self.num_block_records = num_block_records | |
self.searcher_beam_size = searcher_beam_size | |
self.searcher_seq_len = searcher_seq_len | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.num_candidates = num_candidates | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
candiate_input_ids = ids_tensor([self.batch_size, self.num_candidates, self.seq_length], self.vocab_size) | |
reader_input_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.vocab_size) | |
input_mask = None | |
candiate_input_mask = None | |
reader_input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
candiate_input_mask = random_attention_mask([self.batch_size, self.num_candidates, self.seq_length]) | |
reader_input_mask = random_attention_mask([self.reader_beam_size, self.reader_seq_len]) | |
token_type_ids = None | |
candidate_token_type_ids = None | |
reader_token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
candidate_token_type_ids = ids_tensor( | |
[self.batch_size, self.num_candidates, self.seq_length], self.type_vocab_size | |
) | |
reader_token_type_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
# inputs with additional num_candidates axis. | |
scorer_encoder_inputs = (candiate_input_ids, candiate_input_mask, candidate_token_type_ids) | |
# reader inputs | |
reader_inputs = (reader_input_ids, reader_input_mask, reader_token_type_ids) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
scorer_encoder_inputs, | |
reader_inputs, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def get_config(self): | |
return RealmConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
retriever_proj_size=self.retriever_proj_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
num_candidates=self.num_candidates, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_embedder( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
scorer_encoder_inputs, | |
reader_inputs, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = RealmEmbedder(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result.projected_score.shape, (self.batch_size, self.retriever_proj_size)) | |
def create_and_check_encoder( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
scorer_encoder_inputs, | |
reader_inputs, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = RealmKnowledgeAugEncoder(config=config) | |
model.to(torch_device) | |
model.eval() | |
relevance_score = floats_tensor([self.batch_size, self.num_candidates]) | |
result = model( | |
scorer_encoder_inputs[0], | |
attention_mask=scorer_encoder_inputs[1], | |
token_type_ids=scorer_encoder_inputs[2], | |
relevance_score=relevance_score, | |
labels=token_labels, | |
) | |
self.parent.assertEqual( | |
result.logits.shape, (self.batch_size * self.num_candidates, self.seq_length, self.vocab_size) | |
) | |
def create_and_check_reader( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
scorer_encoder_inputs, | |
reader_inputs, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = RealmReader(config=config) | |
model.to(torch_device) | |
model.eval() | |
relevance_score = floats_tensor([self.reader_beam_size]) | |
result = model( | |
reader_inputs[0], | |
attention_mask=reader_inputs[1], | |
token_type_ids=reader_inputs[2], | |
relevance_score=relevance_score, | |
) | |
self.parent.assertEqual(result.block_idx.shape, ()) | |
self.parent.assertEqual(result.candidate.shape, ()) | |
self.parent.assertEqual(result.start_pos.shape, ()) | |
self.parent.assertEqual(result.end_pos.shape, ()) | |
def create_and_check_scorer( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
scorer_encoder_inputs, | |
reader_inputs, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = RealmScorer(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
candidate_input_ids=scorer_encoder_inputs[0], | |
candidate_attention_mask=scorer_encoder_inputs[1], | |
candidate_token_type_ids=scorer_encoder_inputs[2], | |
) | |
self.parent.assertEqual(result.relevance_score.shape, (self.batch_size, self.num_candidates)) | |
self.parent.assertEqual(result.query_score.shape, (self.batch_size, self.retriever_proj_size)) | |
self.parent.assertEqual( | |
result.candidate_score.shape, (self.batch_size, self.num_candidates, self.retriever_proj_size) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
scorer_encoder_inputs, | |
reader_inputs, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class RealmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
RealmEmbedder, | |
RealmKnowledgeAugEncoder, | |
# RealmScorer is excluded from common tests as it is a container model | |
# consisting of two RealmEmbedders & a simple inner product calculation. | |
# RealmScorer | |
) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = () | |
pipeline_model_mapping = {} if is_torch_available() else {} | |
# disable these tests because there is no base_model in Realm | |
test_save_load_fast_init_from_base = False | |
test_save_load_fast_init_to_base = False | |
def setUp(self): | |
self.test_pruning = False | |
self.model_tester = RealmModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=RealmConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_embedder(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_embedder(*config_and_inputs) | |
def test_encoder(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_encoder(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_embedder(*config_and_inputs) | |
self.model_tester.create_and_check_encoder(*config_and_inputs) | |
def test_scorer(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_scorer(*config_and_inputs) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
config, *inputs = self.model_tester.prepare_config_and_inputs() | |
input_ids, token_type_ids, input_mask, scorer_encoder_inputs = inputs[0:4] | |
config.return_dict = True | |
tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa") | |
# RealmKnowledgeAugEncoder training | |
model = RealmKnowledgeAugEncoder(config) | |
model.to(torch_device) | |
model.train() | |
inputs_dict = { | |
"input_ids": scorer_encoder_inputs[0].to(torch_device), | |
"attention_mask": scorer_encoder_inputs[1].to(torch_device), | |
"token_type_ids": scorer_encoder_inputs[2].to(torch_device), | |
"relevance_score": floats_tensor([self.model_tester.batch_size, self.model_tester.num_candidates]), | |
} | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device | |
) | |
inputs = inputs_dict | |
loss = model(**inputs).loss | |
loss.backward() | |
# RealmForOpenQA training | |
openqa_config = copy.deepcopy(config) | |
openqa_config.vocab_size = 30522 # the retrieved texts will inevitably have more than 99 vocabs. | |
openqa_config.num_block_records = 5 | |
openqa_config.searcher_beam_size = 2 | |
block_records = np.array( | |
[ | |
b"This is the first record.", | |
b"This is the second record.", | |
b"This is the third record.", | |
b"This is the fourth record.", | |
b"This is the fifth record.", | |
], | |
dtype=np.object, | |
) | |
retriever = RealmRetriever(block_records, tokenizer) | |
model = RealmForOpenQA(openqa_config, retriever) | |
model.to(torch_device) | |
model.train() | |
inputs_dict = { | |
"input_ids": input_ids[:1].to(torch_device), | |
"attention_mask": input_mask[:1].to(torch_device), | |
"token_type_ids": token_type_ids[:1].to(torch_device), | |
"answer_ids": input_ids[:1].tolist(), | |
} | |
inputs = self._prepare_for_class(inputs_dict, RealmForOpenQA) | |
loss = model(**inputs).reader_output.loss | |
loss.backward() | |
# Test model.block_embedding_to | |
device = torch.device("cpu") | |
model.block_embedding_to(device) | |
loss = model(**inputs).reader_output.loss | |
loss.backward() | |
self.assertEqual(model.block_emb.device.type, device.type) | |
def test_embedder_from_pretrained(self): | |
model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder") | |
self.assertIsNotNone(model) | |
def test_encoder_from_pretrained(self): | |
model = RealmKnowledgeAugEncoder.from_pretrained("google/realm-cc-news-pretrained-encoder") | |
self.assertIsNotNone(model) | |
def test_open_qa_from_pretrained(self): | |
model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa") | |
self.assertIsNotNone(model) | |
def test_reader_from_pretrained(self): | |
model = RealmReader.from_pretrained("google/realm-orqa-nq-reader") | |
self.assertIsNotNone(model) | |
def test_scorer_from_pretrained(self): | |
model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer") | |
self.assertIsNotNone(model) | |
class RealmModelIntegrationTest(unittest.TestCase): | |
def test_inference_embedder(self): | |
retriever_projected_size = 128 | |
model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder") | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, retriever_projected_size)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor([[-0.0714, -0.0837, -0.1314]]) | |
self.assertTrue(torch.allclose(output[:, :3], expected_slice, atol=1e-4)) | |
def test_inference_encoder(self): | |
num_candidates = 2 | |
vocab_size = 30522 | |
model = RealmKnowledgeAugEncoder.from_pretrained( | |
"google/realm-cc-news-pretrained-encoder", num_candidates=num_candidates | |
) | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) | |
relevance_score = torch.tensor([[0.3, 0.7]], dtype=torch.float32) | |
output = model(input_ids, relevance_score=relevance_score)[0] | |
expected_shape = torch.Size((2, 6, vocab_size)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor([[[-11.0888, -11.2544], [-10.2170, -10.3874]]]) | |
self.assertTrue(torch.allclose(output[1, :2, :2], expected_slice, atol=1e-4)) | |
def test_inference_open_qa(self): | |
from transformers.models.realm.retrieval_realm import RealmRetriever | |
tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa") | |
retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa") | |
model = RealmForOpenQA.from_pretrained( | |
"google/realm-orqa-nq-openqa", | |
retriever=retriever, | |
) | |
question = "Who is the pioneer in modern computer science?" | |
question = tokenizer( | |
[question], | |
padding=True, | |
truncation=True, | |
max_length=model.config.searcher_seq_len, | |
return_tensors="pt", | |
).to(model.device) | |
predicted_answer_ids = model(**question).predicted_answer_ids | |
predicted_answer = tokenizer.decode(predicted_answer_ids) | |
self.assertEqual(predicted_answer, "alan mathison turing") | |
def test_inference_reader(self): | |
config = RealmConfig(reader_beam_size=2, max_span_width=3) | |
model = RealmReader.from_pretrained("google/realm-orqa-nq-reader", config=config) | |
concat_input_ids = torch.arange(10).view((2, 5)) | |
concat_token_type_ids = torch.tensor([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], dtype=torch.int64) | |
concat_block_mask = torch.tensor([[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]], dtype=torch.int64) | |
relevance_score = torch.tensor([0.3, 0.7], dtype=torch.float32) | |
output = model( | |
concat_input_ids, | |
token_type_ids=concat_token_type_ids, | |
relevance_score=relevance_score, | |
block_mask=concat_block_mask, | |
return_dict=True, | |
) | |
block_idx_expected_shape = torch.Size(()) | |
start_pos_expected_shape = torch.Size((1,)) | |
end_pos_expected_shape = torch.Size((1,)) | |
self.assertEqual(output.block_idx.shape, block_idx_expected_shape) | |
self.assertEqual(output.start_pos.shape, start_pos_expected_shape) | |
self.assertEqual(output.end_pos.shape, end_pos_expected_shape) | |
expected_block_idx = torch.tensor(1) | |
expected_start_pos = torch.tensor(3) | |
expected_end_pos = torch.tensor(3) | |
self.assertTrue(torch.allclose(output.block_idx, expected_block_idx, atol=1e-4)) | |
self.assertTrue(torch.allclose(output.start_pos, expected_start_pos, atol=1e-4)) | |
self.assertTrue(torch.allclose(output.end_pos, expected_end_pos, atol=1e-4)) | |
def test_inference_scorer(self): | |
num_candidates = 2 | |
model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=num_candidates) | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) | |
candidate_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) | |
output = model(input_ids, candidate_input_ids=candidate_input_ids)[0] | |
expected_shape = torch.Size((1, 2)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor([[0.7410, 0.7170]]) | |
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4)) | |