File size: 20,643 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch REALM model. """

import copy
import unittest

import numpy as np

from transformers import RealmConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        RealmEmbedder,
        RealmForOpenQA,
        RealmKnowledgeAugEncoder,
        RealmReader,
        RealmRetriever,
        RealmScorer,
        RealmTokenizer,
    )


class RealmModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        retriever_proj_size=128,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        span_hidden_size=50,
        max_span_width=10,
        reader_layer_norm_eps=1e-3,
        reader_beam_size=4,
        reader_seq_len=288 + 32,
        num_block_records=13353718,
        searcher_beam_size=8,
        searcher_seq_len=64,
        num_labels=3,
        num_choices=4,
        num_candidates=10,
        scope=None,
    ):
        # General config
        self.parent = parent
        self.batch_size = batch_size
        self.retriever_proj_size = retriever_proj_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps

        # Reader config
        self.span_hidden_size = span_hidden_size
        self.max_span_width = max_span_width
        self.reader_layer_norm_eps = reader_layer_norm_eps
        self.reader_beam_size = reader_beam_size
        self.reader_seq_len = reader_seq_len

        # Searcher config
        self.num_block_records = num_block_records
        self.searcher_beam_size = searcher_beam_size
        self.searcher_seq_len = searcher_seq_len

        self.num_labels = num_labels
        self.num_choices = num_choices
        self.num_candidates = num_candidates
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        candiate_input_ids = ids_tensor([self.batch_size, self.num_candidates, self.seq_length], self.vocab_size)
        reader_input_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.vocab_size)

        input_mask = None
        candiate_input_mask = None
        reader_input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
            candiate_input_mask = random_attention_mask([self.batch_size, self.num_candidates, self.seq_length])
            reader_input_mask = random_attention_mask([self.reader_beam_size, self.reader_seq_len])

        token_type_ids = None
        candidate_token_type_ids = None
        reader_token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
            candidate_token_type_ids = ids_tensor(
                [self.batch_size, self.num_candidates, self.seq_length], self.type_vocab_size
            )
            reader_token_type_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        # inputs with additional num_candidates axis.
        scorer_encoder_inputs = (candiate_input_ids, candiate_input_mask, candidate_token_type_ids)
        # reader inputs
        reader_inputs = (reader_input_ids, reader_input_mask, reader_token_type_ids)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            scorer_encoder_inputs,
            reader_inputs,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def get_config(self):
        return RealmConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            retriever_proj_size=self.retriever_proj_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_candidates=self.num_candidates,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

    def create_and_check_embedder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        scorer_encoder_inputs,
        reader_inputs,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        model = RealmEmbedder(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.projected_score.shape, (self.batch_size, self.retriever_proj_size))

    def create_and_check_encoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        scorer_encoder_inputs,
        reader_inputs,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        model = RealmKnowledgeAugEncoder(config=config)
        model.to(torch_device)
        model.eval()
        relevance_score = floats_tensor([self.batch_size, self.num_candidates])
        result = model(
            scorer_encoder_inputs[0],
            attention_mask=scorer_encoder_inputs[1],
            token_type_ids=scorer_encoder_inputs[2],
            relevance_score=relevance_score,
            labels=token_labels,
        )
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size * self.num_candidates, self.seq_length, self.vocab_size)
        )

    def create_and_check_reader(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        scorer_encoder_inputs,
        reader_inputs,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        model = RealmReader(config=config)
        model.to(torch_device)
        model.eval()
        relevance_score = floats_tensor([self.reader_beam_size])
        result = model(
            reader_inputs[0],
            attention_mask=reader_inputs[1],
            token_type_ids=reader_inputs[2],
            relevance_score=relevance_score,
        )
        self.parent.assertEqual(result.block_idx.shape, ())
        self.parent.assertEqual(result.candidate.shape, ())
        self.parent.assertEqual(result.start_pos.shape, ())
        self.parent.assertEqual(result.end_pos.shape, ())

    def create_and_check_scorer(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        scorer_encoder_inputs,
        reader_inputs,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        model = RealmScorer(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            candidate_input_ids=scorer_encoder_inputs[0],
            candidate_attention_mask=scorer_encoder_inputs[1],
            candidate_token_type_ids=scorer_encoder_inputs[2],
        )
        self.parent.assertEqual(result.relevance_score.shape, (self.batch_size, self.num_candidates))
        self.parent.assertEqual(result.query_score.shape, (self.batch_size, self.retriever_proj_size))
        self.parent.assertEqual(
            result.candidate_score.shape, (self.batch_size, self.num_candidates, self.retriever_proj_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            scorer_encoder_inputs,
            reader_inputs,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class RealmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            RealmEmbedder,
            RealmKnowledgeAugEncoder,
            # RealmScorer is excluded from common tests as it is a container model
            # consisting of two RealmEmbedders & a simple inner product calculation.
            # RealmScorer
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = ()
    pipeline_model_mapping = {} if is_torch_available() else {}

    # disable these tests because there is no base_model in Realm
    test_save_load_fast_init_from_base = False
    test_save_load_fast_init_to_base = False

    def setUp(self):
        self.test_pruning = False
        self.model_tester = RealmModelTester(self)
        self.config_tester = ConfigTester(self, config_class=RealmConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_embedder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_embedder(*config_and_inputs)

    def test_encoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_encoder(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_embedder(*config_and_inputs)
            self.model_tester.create_and_check_encoder(*config_and_inputs)

    def test_scorer(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_scorer(*config_and_inputs)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, *inputs = self.model_tester.prepare_config_and_inputs()
        input_ids, token_type_ids, input_mask, scorer_encoder_inputs = inputs[0:4]
        config.return_dict = True

        tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa")

        # RealmKnowledgeAugEncoder training
        model = RealmKnowledgeAugEncoder(config)
        model.to(torch_device)
        model.train()

        inputs_dict = {
            "input_ids": scorer_encoder_inputs[0].to(torch_device),
            "attention_mask": scorer_encoder_inputs[1].to(torch_device),
            "token_type_ids": scorer_encoder_inputs[2].to(torch_device),
            "relevance_score": floats_tensor([self.model_tester.batch_size, self.model_tester.num_candidates]),
        }
        inputs_dict["labels"] = torch.zeros(
            (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
        )
        inputs = inputs_dict
        loss = model(**inputs).loss
        loss.backward()

        # RealmForOpenQA training
        openqa_config = copy.deepcopy(config)
        openqa_config.vocab_size = 30522  # the retrieved texts will inevitably have more than 99 vocabs.
        openqa_config.num_block_records = 5
        openqa_config.searcher_beam_size = 2

        block_records = np.array(
            [
                b"This is the first record.",
                b"This is the second record.",
                b"This is the third record.",
                b"This is the fourth record.",
                b"This is the fifth record.",
            ],
            dtype=np.object,
        )
        retriever = RealmRetriever(block_records, tokenizer)
        model = RealmForOpenQA(openqa_config, retriever)
        model.to(torch_device)
        model.train()

        inputs_dict = {
            "input_ids": input_ids[:1].to(torch_device),
            "attention_mask": input_mask[:1].to(torch_device),
            "token_type_ids": token_type_ids[:1].to(torch_device),
            "answer_ids": input_ids[:1].tolist(),
        }
        inputs = self._prepare_for_class(inputs_dict, RealmForOpenQA)
        loss = model(**inputs).reader_output.loss
        loss.backward()

        # Test model.block_embedding_to
        device = torch.device("cpu")
        model.block_embedding_to(device)
        loss = model(**inputs).reader_output.loss
        loss.backward()
        self.assertEqual(model.block_emb.device.type, device.type)

    @slow
    def test_embedder_from_pretrained(self):
        model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
        self.assertIsNotNone(model)

    @slow
    def test_encoder_from_pretrained(self):
        model = RealmKnowledgeAugEncoder.from_pretrained("google/realm-cc-news-pretrained-encoder")
        self.assertIsNotNone(model)

    @slow
    def test_open_qa_from_pretrained(self):
        model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa")
        self.assertIsNotNone(model)

    @slow
    def test_reader_from_pretrained(self):
        model = RealmReader.from_pretrained("google/realm-orqa-nq-reader")
        self.assertIsNotNone(model)

    @slow
    def test_scorer_from_pretrained(self):
        model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer")
        self.assertIsNotNone(model)


@require_torch
class RealmModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_embedder(self):
        retriever_projected_size = 128

        model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
        input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = torch.Size((1, retriever_projected_size))
        self.assertEqual(output.shape, expected_shape)

        expected_slice = torch.tensor([[-0.0714, -0.0837, -0.1314]])
        self.assertTrue(torch.allclose(output[:, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_encoder(self):
        num_candidates = 2
        vocab_size = 30522

        model = RealmKnowledgeAugEncoder.from_pretrained(
            "google/realm-cc-news-pretrained-encoder", num_candidates=num_candidates
        )
        input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
        relevance_score = torch.tensor([[0.3, 0.7]], dtype=torch.float32)
        output = model(input_ids, relevance_score=relevance_score)[0]

        expected_shape = torch.Size((2, 6, vocab_size))
        self.assertEqual(output.shape, expected_shape)

        expected_slice = torch.tensor([[[-11.0888, -11.2544], [-10.2170, -10.3874]]])

        self.assertTrue(torch.allclose(output[1, :2, :2], expected_slice, atol=1e-4))

    @slow
    def test_inference_open_qa(self):
        from transformers.models.realm.retrieval_realm import RealmRetriever

        tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
        retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa")

        model = RealmForOpenQA.from_pretrained(
            "google/realm-orqa-nq-openqa",
            retriever=retriever,
        )

        question = "Who is the pioneer in modern computer science?"

        question = tokenizer(
            [question],
            padding=True,
            truncation=True,
            max_length=model.config.searcher_seq_len,
            return_tensors="pt",
        ).to(model.device)

        predicted_answer_ids = model(**question).predicted_answer_ids

        predicted_answer = tokenizer.decode(predicted_answer_ids)
        self.assertEqual(predicted_answer, "alan mathison turing")

    @slow
    def test_inference_reader(self):
        config = RealmConfig(reader_beam_size=2, max_span_width=3)
        model = RealmReader.from_pretrained("google/realm-orqa-nq-reader", config=config)

        concat_input_ids = torch.arange(10).view((2, 5))
        concat_token_type_ids = torch.tensor([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], dtype=torch.int64)
        concat_block_mask = torch.tensor([[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]], dtype=torch.int64)
        relevance_score = torch.tensor([0.3, 0.7], dtype=torch.float32)

        output = model(
            concat_input_ids,
            token_type_ids=concat_token_type_ids,
            relevance_score=relevance_score,
            block_mask=concat_block_mask,
            return_dict=True,
        )

        block_idx_expected_shape = torch.Size(())
        start_pos_expected_shape = torch.Size((1,))
        end_pos_expected_shape = torch.Size((1,))
        self.assertEqual(output.block_idx.shape, block_idx_expected_shape)
        self.assertEqual(output.start_pos.shape, start_pos_expected_shape)
        self.assertEqual(output.end_pos.shape, end_pos_expected_shape)

        expected_block_idx = torch.tensor(1)
        expected_start_pos = torch.tensor(3)
        expected_end_pos = torch.tensor(3)

        self.assertTrue(torch.allclose(output.block_idx, expected_block_idx, atol=1e-4))
        self.assertTrue(torch.allclose(output.start_pos, expected_start_pos, atol=1e-4))
        self.assertTrue(torch.allclose(output.end_pos, expected_end_pos, atol=1e-4))

    @slow
    def test_inference_scorer(self):
        num_candidates = 2

        model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=num_candidates)

        input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
        candidate_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
        output = model(input_ids, candidate_input_ids=candidate_input_ids)[0]

        expected_shape = torch.Size((1, 2))
        self.assertEqual(output.shape, expected_shape)

        expected_slice = torch.tensor([[0.7410, 0.7170]])
        self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))