Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import requests | |
from transformers.testing_utils import require_torch, require_vision | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs | |
if is_torch_available(): | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import Pix2StructImageProcessor | |
class Pix2StructImageProcessingTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=7, | |
num_channels=3, | |
image_size=18, | |
min_resolution=30, | |
max_resolution=400, | |
size=None, | |
do_normalize=True, | |
do_convert_rgb=True, | |
patch_size=None, | |
): | |
size = size if size is not None else {"height": 20, "width": 20} | |
self.parent = parent | |
self.batch_size = batch_size | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.min_resolution = min_resolution | |
self.max_resolution = max_resolution | |
self.size = size | |
self.do_normalize = do_normalize | |
self.do_convert_rgb = do_convert_rgb | |
self.max_patches = [512, 1024, 2048, 4096] | |
self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16} | |
def prepare_image_processor_dict(self): | |
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} | |
def prepare_dummy_image(self): | |
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" | |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") | |
return raw_image | |
class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): | |
image_processing_class = Pix2StructImageProcessor if is_vision_available() else None | |
def setUp(self): | |
self.image_processor_tester = Pix2StructImageProcessingTester(self) | |
def image_processor_dict(self): | |
return self.image_processor_tester.prepare_image_processor_dict() | |
def test_image_processor_properties(self): | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
self.assertTrue(hasattr(image_processor, "do_normalize")) | |
self.assertTrue(hasattr(image_processor, "do_convert_rgb")) | |
def test_expected_patches(self): | |
dummy_image = self.image_processor_tester.prepare_dummy_image() | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
max_patch = 2048 | |
inputs = image_processor(dummy_image, return_tensors="pt", max_patches=max_patch) | |
self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606), atol=1e-3, rtol=1e-3)) | |
def test_call_pil(self): | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random PIL images | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) | |
for image in image_inputs: | |
self.assertIsInstance(image, Image.Image) | |
# Test not batched input | |
expected_hidden_dim = ( | |
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) | |
* self.image_processor_tester.num_channels | |
) + 2 | |
for max_patch in self.image_processor_tester.max_patches: | |
# Test not batched input | |
encoded_images = image_processor( | |
image_inputs[0], return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(1, max_patch, expected_hidden_dim), | |
) | |
# Test batched | |
encoded_images = image_processor( | |
image_inputs, return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), | |
) | |
def test_call_vqa(self): | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random PIL images | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) | |
for image in image_inputs: | |
self.assertIsInstance(image, Image.Image) | |
# Test not batched input | |
expected_hidden_dim = ( | |
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) | |
* self.image_processor_tester.num_channels | |
) + 2 | |
image_processor.is_vqa = True | |
for max_patch in self.image_processor_tester.max_patches: | |
# Test not batched input | |
with self.assertRaises(ValueError): | |
encoded_images = image_processor( | |
image_inputs[0], return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
dummy_text = "Hello" | |
encoded_images = image_processor( | |
image_inputs[0], return_tensors="pt", max_patches=max_patch, header_text=dummy_text | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(1, max_patch, expected_hidden_dim), | |
) | |
# Test batched | |
encoded_images = image_processor( | |
image_inputs, return_tensors="pt", max_patches=max_patch, header_text=dummy_text | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), | |
) | |
def test_call_numpy(self): | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random numpy tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, np.ndarray) | |
expected_hidden_dim = ( | |
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) | |
* self.image_processor_tester.num_channels | |
) + 2 | |
for max_patch in self.image_processor_tester.max_patches: | |
# Test not batched input | |
encoded_images = image_processor( | |
image_inputs[0], return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(1, max_patch, expected_hidden_dim), | |
) | |
# Test batched | |
encoded_images = image_processor( | |
image_inputs, return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), | |
) | |
def test_call_pytorch(self): | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, torch.Tensor) | |
# Test not batched input | |
expected_hidden_dim = ( | |
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) | |
* self.image_processor_tester.num_channels | |
) + 2 | |
for max_patch in self.image_processor_tester.max_patches: | |
# Test not batched input | |
encoded_images = image_processor( | |
image_inputs[0], return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(1, max_patch, expected_hidden_dim), | |
) | |
# Test batched | |
encoded_images = image_processor( | |
image_inputs, return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), | |
) | |
class Pix2StructImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase): | |
image_processing_class = Pix2StructImageProcessor if is_vision_available() else None | |
def setUp(self): | |
self.image_processor_tester = Pix2StructImageProcessingTester(self, num_channels=4) | |
self.expected_encoded_image_num_channels = 3 | |
def image_processor_dict(self): | |
return self.image_processor_tester.prepare_image_processor_dict() | |
def test_image_processor_properties(self): | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
self.assertTrue(hasattr(image_processor, "do_normalize")) | |
self.assertTrue(hasattr(image_processor, "do_convert_rgb")) | |
def test_call_pil_four_channels(self): | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random PIL images | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) | |
for image in image_inputs: | |
self.assertIsInstance(image, Image.Image) | |
# Test not batched input | |
expected_hidden_dim = ( | |
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) | |
* (self.image_processor_tester.num_channels - 1) | |
) + 2 | |
for max_patch in self.image_processor_tester.max_patches: | |
# Test not batched input | |
encoded_images = image_processor( | |
image_inputs[0], return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(1, max_patch, expected_hidden_dim), | |
) | |
# Test batched | |
encoded_images = image_processor( | |
image_inputs, return_tensors="pt", max_patches=max_patch | |
).flattened_patches | |
self.assertEqual( | |
encoded_images.shape, | |
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), | |
) | |