File size: 11,442 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import requests

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import Pix2StructImageProcessor


class Pix2StructImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        size=None,
        do_normalize=True,
        do_convert_rgb=True,
        patch_size=None,
    ):
        size = size if size is not None else {"height": 20, "width": 20}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
        self.do_normalize = do_normalize
        self.do_convert_rgb = do_convert_rgb
        self.max_patches = [512, 1024, 2048, 4096]
        self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}

    def prepare_image_processor_dict(self):
        return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}

    def prepare_dummy_image(self):
        img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
        raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
        return raw_image


@require_torch
@require_vision
class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = Pix2StructImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = Pix2StructImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))

    def test_expected_patches(self):
        dummy_image = self.image_processor_tester.prepare_dummy_image()

        image_processor = self.image_processing_class(**self.image_processor_dict)
        max_patch = 2048

        inputs = image_processor(dummy_image, return_tensors="pt", max_patches=max_patch)
        self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606), atol=1e-3, rtol=1e-3))

    def test_call_pil(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        expected_hidden_dim = (
            (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
            * self.image_processor_tester.num_channels
        ) + 2

        for max_patch in self.image_processor_tester.max_patches:
            # Test not batched input
            encoded_images = image_processor(
                image_inputs[0], return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (1, max_patch, expected_hidden_dim),
            )

            # Test batched
            encoded_images = image_processor(
                image_inputs, return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
            )

    def test_call_vqa(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        expected_hidden_dim = (
            (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
            * self.image_processor_tester.num_channels
        ) + 2

        image_processor.is_vqa = True

        for max_patch in self.image_processor_tester.max_patches:
            # Test not batched input
            with self.assertRaises(ValueError):
                encoded_images = image_processor(
                    image_inputs[0], return_tensors="pt", max_patches=max_patch
                ).flattened_patches

            dummy_text = "Hello"

            encoded_images = image_processor(
                image_inputs[0], return_tensors="pt", max_patches=max_patch, header_text=dummy_text
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (1, max_patch, expected_hidden_dim),
            )

            # Test batched
            encoded_images = image_processor(
                image_inputs, return_tensors="pt", max_patches=max_patch, header_text=dummy_text
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
            )

    def test_call_numpy(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        expected_hidden_dim = (
            (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
            * self.image_processor_tester.num_channels
        ) + 2

        for max_patch in self.image_processor_tester.max_patches:
            # Test not batched input
            encoded_images = image_processor(
                image_inputs[0], return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (1, max_patch, expected_hidden_dim),
            )

            # Test batched
            encoded_images = image_processor(
                image_inputs, return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
            )

    def test_call_pytorch(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        expected_hidden_dim = (
            (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
            * self.image_processor_tester.num_channels
        ) + 2

        for max_patch in self.image_processor_tester.max_patches:
            # Test not batched input
            encoded_images = image_processor(
                image_inputs[0], return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (1, max_patch, expected_hidden_dim),
            )

            # Test batched
            encoded_images = image_processor(
                image_inputs, return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
            )


@require_torch
@require_vision
class Pix2StructImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = Pix2StructImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = Pix2StructImageProcessingTester(self, num_channels=4)
        self.expected_encoded_image_num_channels = 3

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))

    def test_call_pil_four_channels(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        expected_hidden_dim = (
            (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
            * (self.image_processor_tester.num_channels - 1)
        ) + 2

        for max_patch in self.image_processor_tester.max_patches:
            # Test not batched input
            encoded_images = image_processor(
                image_inputs[0], return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (1, max_patch, expected_hidden_dim),
            )

            # Test batched
            encoded_images = image_processor(
                image_inputs, return_tensors="pt", max_patches=max_patch
            ).flattened_patches
            self.assertEqual(
                encoded_images.shape,
                (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
            )