Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the TensorFlow MobileViT model. """ | |
import inspect | |
import unittest | |
from transformers import MobileViTConfig | |
from transformers.file_utils import is_tf_available, is_vision_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import numpy as np | |
import tensorflow as tf | |
from transformers import TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel | |
from transformers.models.mobilevit.modeling_tf_mobilevit import TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import MobileViTFeatureExtractor | |
class TFMobileViTConfigTester(ConfigTester): | |
def create_and_test_config_common_properties(self): | |
config = self.config_class(**self.inputs_dict) | |
self.parent.assertTrue(hasattr(config, "hidden_sizes")) | |
self.parent.assertTrue(hasattr(config, "neck_hidden_sizes")) | |
self.parent.assertTrue(hasattr(config, "num_attention_heads")) | |
class TFMobileViTModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=32, | |
patch_size=2, | |
num_channels=3, | |
last_hidden_size=640, | |
num_attention_heads=4, | |
hidden_act="silu", | |
conv_kernel_size=3, | |
output_stride=32, | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
classifier_dropout_prob=0.1, | |
initializer_range=0.02, | |
is_training=True, | |
use_labels=True, | |
num_labels=10, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.last_hidden_size = last_hidden_size | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.conv_kernel_size = conv_kernel_size | |
self.output_stride = output_stride | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.classifier_dropout_prob = classifier_dropout_prob | |
self.use_labels = use_labels | |
self.is_training = is_training | |
self.num_labels = num_labels | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
pixel_labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.num_labels) | |
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels, pixel_labels | |
def get_config(self): | |
return MobileViTConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
num_attention_heads=self.num_attention_heads, | |
hidden_act=self.hidden_act, | |
conv_kernel_size=self.conv_kernel_size, | |
output_stride=self.output_stride, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
classifier_dropout_prob=self.classifier_dropout_prob, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values, labels, pixel_labels): | |
model = TFMobileViTModel(config=config) | |
result = model(pixel_values, training=False) | |
expected_height = expected_width = self.image_size // self.output_stride | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.last_hidden_size, expected_height, expected_width) | |
) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = TFMobileViTForImageClassification(config) | |
result = model(pixel_values, labels=labels, training=False) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = TFMobileViTForSemanticSegmentation(config) | |
expected_height = expected_width = self.image_size // self.output_stride | |
result = model(pixel_values, training=False) | |
self.parent.assertEqual( | |
result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width) | |
) | |
result = model(pixel_values, labels=pixel_labels, training=False) | |
self.parent.assertEqual( | |
result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels, pixel_labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class TFMobileViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
(TFMobileViTModel, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{"feature-extraction": TFMobileViTModel, "image-classification": TFMobileViTForImageClassification} | |
if is_tf_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
has_attentions = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFMobileViTModelTester(self) | |
self.config_tester = TFMobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_attention_outputs(self): | |
pass | |
def test_compile_tf_model(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.call) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_stages = 5 | |
self.assertEqual(len(hidden_states), expected_num_stages) | |
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width) | |
# with the width and height being successively divided by 2. | |
divisor = 2 | |
for i in range(len(hidden_states)): | |
self.assertListEqual( | |
list(hidden_states[i].shape[-2:]), | |
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], | |
) | |
divisor *= 2 | |
self.assertEqual(self.model_tester.output_stride, divisor // 2) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_for_semantic_segmentation(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) | |
def test_dataset_conversion(self): | |
super().test_dataset_conversion() | |
def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1): | |
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol)) | |
def test_keras_fit(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
# Since `TFMobileViTModel` cannot operate with the default `fit()` method. | |
if model_class.__name__ != "TFMobileViTModel": | |
model = model_class(config) | |
if getattr(model, "hf_compute_loss", None): | |
super().test_keras_fit() | |
# The default test_loss_computation() uses -100 as a proxy ignore_index | |
# to test masked losses. Overridding to avoid -100 since semantic segmentation | |
# models use `semantic_loss_ignore_index` from the config. | |
def test_loss_computation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
# set an ignore index to correctly test the masked loss used in | |
# `TFMobileViTForSemanticSegmentation`. | |
if model_class.__name__ != "TFMobileViTForSemanticSegmentation": | |
config.semantic_loss_ignore_index = 5 | |
model = model_class(config) | |
if getattr(model, "hf_compute_loss", None): | |
# The number of elements in the loss should be the same as the number of elements in the label | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
added_label = prepared_for_class[ | |
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] | |
] | |
expected_loss_size = added_label.shape.as_list()[:1] | |
# Test that model correctly compute the loss with kwargs | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
possible_input_names = {"input_ids", "pixel_values", "input_features"} | |
input_name = possible_input_names.intersection(set(prepared_for_class)).pop() | |
model_input = prepared_for_class.pop(input_name) | |
loss = model(model_input, **prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
# Test that model correctly compute the loss when we mask some positions | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
possible_input_names = {"input_ids", "pixel_values", "input_features"} | |
input_name = possible_input_names.intersection(set(prepared_for_class)).pop() | |
model_input = prepared_for_class.pop(input_name) | |
if "labels" in prepared_for_class: | |
labels = prepared_for_class["labels"].numpy() | |
if len(labels.shape) > 1 and labels.shape[1] != 1: | |
# labels[0] = -100 | |
prepared_for_class["labels"] = tf.convert_to_tensor(labels) | |
loss = model(model_input, **prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
self.assertTrue(not np.any(np.isnan(loss.numpy()))) | |
# Test that model correctly compute the loss with a dict | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
loss = model(prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
# Test that model correctly compute the loss with a tuple | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
# Get keys that were added with the _prepare_for_class function | |
label_keys = prepared_for_class.keys() - inputs_dict.keys() | |
signature = inspect.signature(model.call).parameters | |
signature_names = list(signature.keys()) | |
# Create a dictionary holding the location of the tensors in the tuple | |
tuple_index_mapping = {0: input_name} | |
for label_key in label_keys: | |
label_key_index = signature_names.index(label_key) | |
tuple_index_mapping[label_key_index] = label_key | |
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) | |
# Initialize a list with their default values, update the values and convert to a tuple | |
list_input = [] | |
for name in signature_names: | |
if name != "kwargs": | |
list_input.append(signature[name].default) | |
for index, value in sorted_tuple_index_mapping: | |
list_input[index] = prepared_for_class[value] | |
tuple_input = tuple(list_input) | |
# Send to model | |
loss = model(tuple_input[:-1])[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
def test_model_from_pretrained(self): | |
for model_name in TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFMobileViTModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class TFMobileViTModelIntegrationTest(unittest.TestCase): | |
def test_inference_image_classification_head(self): | |
model = TFMobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small") | |
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small") | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="tf") | |
# forward pass | |
outputs = model(**inputs, training=False) | |
# verify the logits | |
expected_shape = tf.TensorShape((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = tf.constant([-1.9364, -1.2327, -0.4653]) | |
tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4, rtol=1e-04) | |
def test_inference_semantic_segmentation(self): | |
# `from_pt` will be removed | |
model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") | |
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="tf") | |
# forward pass | |
outputs = model(inputs.pixel_values, training=False) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = tf.TensorShape((1, 21, 32, 32)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = tf.constant( | |
[ | |
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], | |
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], | |
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], | |
] | |
) | |
tf.debugging.assert_near(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) | |