File size: 18,465 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow MobileViT model. """


import inspect
import unittest

from transformers import MobileViTConfig
from transformers.file_utils import is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, slow

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_tf_available():
    import numpy as np
    import tensorflow as tf

    from transformers import TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel
    from transformers.models.mobilevit.modeling_tf_mobilevit import TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import MobileViTFeatureExtractor


class TFMobileViTConfigTester(ConfigTester):
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
        self.parent.assertTrue(hasattr(config, "hidden_sizes"))
        self.parent.assertTrue(hasattr(config, "neck_hidden_sizes"))
        self.parent.assertTrue(hasattr(config, "num_attention_heads"))


class TFMobileViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=2,
        num_channels=3,
        last_hidden_size=640,
        num_attention_heads=4,
        hidden_act="silu",
        conv_kernel_size=3,
        output_stride=32,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        classifier_dropout_prob=0.1,
        initializer_range=0.02,
        is_training=True,
        use_labels=True,
        num_labels=10,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.last_hidden_size = last_hidden_size
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.conv_kernel_size = conv_kernel_size
        self.output_stride = output_stride
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.classifier_dropout_prob = classifier_dropout_prob
        self.use_labels = use_labels
        self.is_training = is_training
        self.num_labels = num_labels
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        pixel_labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels, pixel_labels

    def get_config(self):
        return MobileViTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            num_attention_heads=self.num_attention_heads,
            hidden_act=self.hidden_act,
            conv_kernel_size=self.conv_kernel_size,
            output_stride=self.output_stride,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            classifier_dropout_prob=self.classifier_dropout_prob,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
        model = TFMobileViTModel(config=config)
        result = model(pixel_values, training=False)
        expected_height = expected_width = self.image_size // self.output_stride
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.last_hidden_size, expected_height, expected_width)
        )

    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
        config.num_labels = self.num_labels
        model = TFMobileViTForImageClassification(config)
        result = model(pixel_values, labels=labels, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
        config.num_labels = self.num_labels
        model = TFMobileViTForSemanticSegmentation(config)
        expected_height = expected_width = self.image_size // self.output_stride

        result = model(pixel_values, training=False)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
        )

        result = model(pixel_values, labels=pixel_labels, training=False)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels, pixel_labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
class TFMobileViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (TFMobileViTModel, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation)
        if is_tf_available()
        else ()
    )
    pipeline_model_mapping = (
        {"feature-extraction": TFMobileViTModel, "image-classification": TFMobileViTForImageClassification}
        if is_tf_available()
        else {}
    )

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFMobileViTModelTester(self)
        self.config_tester = TFMobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False)

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="MobileViT does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="MobileViT does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    @unittest.skip(reason="MobileViT does not output attentions")
    def test_attention_outputs(self):
        pass

    @unittest.skip("Test was written for TF 1.x and isn't really relevant here")
    def test_compile_tf_model(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_stages = 5
            self.assertEqual(len(hidden_states), expected_num_stages)

            # MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
            # with the width and height being successively divided by 2.
            divisor = 2
            for i in range(len(hidden_states)):
                self.assertListEqual(
                    list(hidden_states[i].shape[-2:]),
                    [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
                )
                divisor *= 2

            self.assertEqual(self.model_tester.output_stride, divisor // 2)

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    def test_for_semantic_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)

    @unittest.skipIf(
        not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
        reason="TF does not support backprop for grouped convolutions on CPU.",
    )
    def test_dataset_conversion(self):
        super().test_dataset_conversion()

    def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1):
        self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))

    @unittest.skipIf(
        not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
        reason="TF does not support backprop for grouped convolutions on CPU.",
    )
    @slow
    def test_keras_fit(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # Since `TFMobileViTModel` cannot operate with the default `fit()` method.
            if model_class.__name__ != "TFMobileViTModel":
                model = model_class(config)
                if getattr(model, "hf_compute_loss", None):
                    super().test_keras_fit()

    # The default test_loss_computation() uses -100 as a proxy ignore_index
    # to test masked losses. Overridding to avoid -100 since semantic segmentation
    #  models use `semantic_loss_ignore_index` from the config.
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            # set an ignore index to correctly test the masked loss used in
            # `TFMobileViTForSemanticSegmentation`.
            if model_class.__name__ != "TFMobileViTForSemanticSegmentation":
                config.semantic_loss_ignore_index = 5

            model = model_class(config)
            if getattr(model, "hf_compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[
                    sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
                ]
                expected_loss_size = added_label.shape.as_list()[:1]

                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)

                loss = model(model_input, **prepared_for_class)[0]
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

                # Test that model correctly compute the loss when we mask some positions
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
                if "labels" in prepared_for_class:
                    labels = prepared_for_class["labels"].numpy()
                    if len(labels.shape) > 1 and labels.shape[1] != 1:
                        # labels[0] = -100
                        prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                        loss = model(model_input, **prepared_for_class)[0]
                        self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
                        self.assertTrue(not np.any(np.isnan(loss.numpy())))

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {0: input_name}
                for label_key in label_keys:
                    label_key_index = signature_names.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)

                for index, value in sorted_tuple_index_mapping:
                    list_input[index] = prepared_for_class[value]

                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input[:-1])[0]

                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFMobileViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_tf
class TFMobileViTModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_image_classification_head(self):
        model = TFMobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small")

        feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small")
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="tf")

        # forward pass
        outputs = model(**inputs, training=False)

        # verify the logits
        expected_shape = tf.TensorShape((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = tf.constant([-1.9364, -1.2327, -0.4653])

        tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4, rtol=1e-04)

    @slow
    def test_inference_semantic_segmentation(self):
        # `from_pt` will be removed
        model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")

        feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="tf")

        # forward pass
        outputs = model(inputs.pixel_values, training=False)
        logits = outputs.logits

        # verify the logits
        expected_shape = tf.TensorShape((1, 21, 32, 32))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
                [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
                [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
            ]
        )

        tf.debugging.assert_near(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)