Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import itertools | |
import random | |
import unittest | |
import numpy as np | |
from transformers import is_speech_available | |
from transformers.testing_utils import require_torch, require_torchaudio | |
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin | |
if is_speech_available(): | |
from transformers import MCTCTFeatureExtractor | |
global_rng = random.Random() | |
def floats_list(shape, scale=1.0, rng=None, name=None): | |
"""Creates a random float32 tensor""" | |
if rng is None: | |
rng = global_rng | |
values = [] | |
for _batch_idx in range(shape[0]): | |
values.append([]) | |
for _ in range(shape[1]): | |
values[-1].append(rng.random() * scale) | |
return values | |
class MCTCTFeatureExtractionTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=7, | |
min_seq_length=400, | |
max_seq_length=2000, | |
feature_size=24, | |
num_mel_bins=24, | |
padding_value=0.0, | |
sampling_rate=16_000, | |
return_attention_mask=True, | |
do_normalize=True, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.min_seq_length = min_seq_length | |
self.max_seq_length = max_seq_length | |
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) | |
self.feature_size = feature_size | |
self.num_mel_bins = num_mel_bins | |
self.padding_value = padding_value | |
self.sampling_rate = sampling_rate | |
self.return_attention_mask = return_attention_mask | |
self.do_normalize = do_normalize | |
def prepare_feat_extract_dict(self): | |
return { | |
"feature_size": self.feature_size, | |
"num_mel_bins": self.num_mel_bins, | |
"padding_value": self.padding_value, | |
"sampling_rate": self.sampling_rate, | |
"return_attention_mask": self.return_attention_mask, | |
"do_normalize": self.do_normalize, | |
} | |
def prepare_inputs_for_common(self, equal_length=False, numpify=False): | |
def _flatten(list_of_lists): | |
return list(itertools.chain(*list_of_lists)) | |
if equal_length: | |
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] | |
else: | |
# make sure that inputs increase in size | |
speech_inputs = [ | |
floats_list((x, self.feature_size)) | |
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) | |
] | |
if numpify: | |
speech_inputs = [np.asarray(x) for x in speech_inputs] | |
return speech_inputs | |
class MCTCTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): | |
feature_extraction_class = MCTCTFeatureExtractor if is_speech_available() else None | |
def setUp(self): | |
self.feat_extract_tester = MCTCTFeatureExtractionTester(self) | |
def _check_zero_mean_unit_variance(self, input_vector): | |
self.assertTrue(np.all(np.mean(input_vector) < 1e-3)) | |
self.assertTrue(np.all(np.abs(np.var(input_vector) - 1) < 1e-3)) | |
def test_call(self): | |
# Tests that all call wrap to encode_plus and batch_encode_plus | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
# create three inputs of length 800, 1000, and 12000 | |
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)] | |
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] | |
# Test feature size | |
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features | |
self.assertTrue(input_features.ndim == 3) | |
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) | |
# Test not batched input | |
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features | |
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features | |
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) | |
# Test batched | |
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features | |
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features | |
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): | |
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) | |
def test_cepstral_mean_and_variance_normalization(self): | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)] | |
paddings = ["longest", "max_length", "do_not_pad"] | |
max_lengths = [None, 16, None] | |
for max_length, padding in zip(max_lengths, paddings): | |
inputs = feature_extractor( | |
speech_inputs, | |
padding=padding, | |
max_length=max_length, | |
return_attention_mask=True, | |
truncation=max_length is not None, # reference to #16419 | |
) | |
input_features = inputs.input_features | |
attention_mask = inputs.attention_mask | |
fbank_feat_lengths = [np.sum(x) for x in attention_mask] | |
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) | |
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) | |
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) | |
def test_cepstral_mean_and_variance_normalization_np(self): | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)] | |
paddings = ["longest", "max_length", "do_not_pad"] | |
max_lengths = [None, 16, None] | |
for max_length, padding in zip(max_lengths, paddings): | |
inputs = feature_extractor( | |
speech_inputs, | |
max_length=max_length, | |
padding=padding, | |
return_tensors="np", | |
return_attention_mask=True, | |
truncation=max_length is not None, | |
) | |
input_features = inputs.input_features | |
attention_mask = inputs.attention_mask | |
fbank_feat_lengths = [np.sum(x) for x in attention_mask] | |
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) | |
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) | |
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) | |
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) | |
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) | |
def test_cepstral_mean_and_variance_normalization_trunc_max_length(self): | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)] | |
inputs = feature_extractor( | |
speech_inputs, | |
padding="max_length", | |
max_length=4, | |
truncation=True, | |
return_tensors="np", | |
return_attention_mask=True, | |
) | |
input_features = inputs.input_features | |
attention_mask = inputs.attention_mask | |
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) | |
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) | |
self._check_zero_mean_unit_variance(input_features[1]) | |
self._check_zero_mean_unit_variance(input_features[2]) | |
def test_cepstral_mean_and_variance_normalization_trunc_longest(self): | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)] | |
inputs = feature_extractor( | |
speech_inputs, | |
padding="longest", | |
max_length=4, | |
truncation=True, | |
return_tensors="np", | |
return_attention_mask=True, | |
) | |
input_features = inputs.input_features | |
attention_mask = inputs.attention_mask | |
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) | |
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) | |
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) | |
self._check_zero_mean_unit_variance(input_features[2]) | |
# make sure that if max_length < longest -> then pad to max_length | |
self.assertEqual(input_features.shape, (3, 4, 24)) | |
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)] | |
inputs = feature_extractor( | |
speech_inputs, | |
padding="longest", | |
max_length=16, | |
truncation=True, | |
return_tensors="np", | |
return_attention_mask=True, | |
) | |
input_features = inputs.input_features | |
attention_mask = inputs.attention_mask | |
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) | |
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) | |
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) | |
self._check_zero_mean_unit_variance(input_features[2]) | |
# make sure that if max_length < longest -> then pad to max_length | |
self.assertEqual(input_features.shape, (3, 16, 24)) | |
def test_double_precision_pad(self): | |
import torch | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
np_speech_inputs = np.random.rand(100, 32).astype(np.float64) | |
py_speech_inputs = np_speech_inputs.tolist() | |
for inputs in [py_speech_inputs, np_speech_inputs]: | |
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") | |
self.assertTrue(np_processed.input_features.dtype == np.float32) | |
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") | |
self.assertTrue(pt_processed.input_features.dtype == torch.float32) | |
def test_different_window(self): | |
import torch | |
init_dict = self.feat_extract_tester.prepare_feat_extract_dict() | |
init_dict["win_function"] = "hann_window" | |
feature_extractor = self.feature_extraction_class(**init_dict) | |
np_speech_inputs = np.random.rand(100, 32).astype(np.float64) | |
py_speech_inputs = np_speech_inputs.tolist() | |
for inputs in [py_speech_inputs, np_speech_inputs]: | |
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") | |
self.assertTrue(np_processed.input_features.dtype == np.float32) | |
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") | |
self.assertTrue(pt_processed.input_features.dtype == torch.float32) | |