File size: 11,993 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import itertools
import random
import unittest

import numpy as np

from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio

from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin


if is_speech_available():
    from transformers import MCTCTFeatureExtractor

global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for _batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


@require_torch
@require_torchaudio
class MCTCTFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=24,
        num_mel_bins=24,
        padding_value=0.0,
        sampling_rate=16_000,
        return_attention_mask=True,
        do_normalize=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
        self.feature_size = feature_size
        self.num_mel_bins = num_mel_bins
        self.padding_value = padding_value
        self.sampling_rate = sampling_rate
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "num_mel_bins": self.num_mel_bins,
            "padding_value": self.padding_value,
            "sampling_rate": self.sampling_rate,
            "return_attention_mask": self.return_attention_mask,
            "do_normalize": self.do_normalize,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                floats_list((x, self.feature_size))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]
        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]
        return speech_inputs


@require_torch
@require_torchaudio
class MCTCTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
    feature_extraction_class = MCTCTFeatureExtractor if is_speech_available() else None

    def setUp(self):
        self.feat_extract_tester = MCTCTFeatureExtractionTester(self)

    def _check_zero_mean_unit_variance(self, input_vector):
        self.assertTrue(np.all(np.mean(input_vector) < 1e-3))
        self.assertTrue(np.all(np.abs(np.var(input_vector) - 1) < 1e-3))

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 12000
        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test feature size
        input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
        self.assertTrue(input_features.ndim == 3)
        self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)

        # Test not batched input
        encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_cepstral_mean_and_variance_normalization(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 16, None]
        for max_length, padding in zip(max_lengths, paddings):
            inputs = feature_extractor(
                speech_inputs,
                padding=padding,
                max_length=max_length,
                return_attention_mask=True,
                truncation=max_length is not None,  # reference to #16419
            )
            input_features = inputs.input_features
            attention_mask = inputs.attention_mask
            fbank_feat_lengths = [np.sum(x) for x in attention_mask]
            self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
            self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
            self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])

    def test_cepstral_mean_and_variance_normalization_np(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 16, None]
        for max_length, padding in zip(max_lengths, paddings):
            inputs = feature_extractor(
                speech_inputs,
                max_length=max_length,
                padding=padding,
                return_tensors="np",
                return_attention_mask=True,
                truncation=max_length is not None,
            )
            input_features = inputs.input_features
            attention_mask = inputs.attention_mask
            fbank_feat_lengths = [np.sum(x) for x in attention_mask]

            self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
            self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6)
            self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
            self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6)
            self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])

    def test_cepstral_mean_and_variance_normalization_trunc_max_length(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
        inputs = feature_extractor(
            speech_inputs,
            padding="max_length",
            max_length=4,
            truncation=True,
            return_tensors="np",
            return_attention_mask=True,
        )
        input_features = inputs.input_features
        attention_mask = inputs.attention_mask
        fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)

        self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
        self._check_zero_mean_unit_variance(input_features[1])
        self._check_zero_mean_unit_variance(input_features[2])

    def test_cepstral_mean_and_variance_normalization_trunc_longest(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
        inputs = feature_extractor(
            speech_inputs,
            padding="longest",
            max_length=4,
            truncation=True,
            return_tensors="np",
            return_attention_mask=True,
        )
        input_features = inputs.input_features
        attention_mask = inputs.attention_mask
        fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)

        self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
        self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
        self._check_zero_mean_unit_variance(input_features[2])

        # make sure that if max_length < longest -> then pad to max_length
        self.assertEqual(input_features.shape, (3, 4, 24))

        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
        inputs = feature_extractor(
            speech_inputs,
            padding="longest",
            max_length=16,
            truncation=True,
            return_tensors="np",
            return_attention_mask=True,
        )
        input_features = inputs.input_features
        attention_mask = inputs.attention_mask
        fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)

        self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
        self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
        self._check_zero_mean_unit_variance(input_features[2])

        # make sure that if max_length < longest -> then pad to max_length
        self.assertEqual(input_features.shape, (3, 16, 24))

    def test_double_precision_pad(self):
        import torch

        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_features.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_features.dtype == torch.float32)

    def test_different_window(self):
        import torch

        init_dict = self.feat_extract_tester.prepare_feat_extract_dict()
        init_dict["win_function"] = "hann_window"

        feature_extractor = self.feature_extraction_class(**init_dict)
        np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_features.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_features.dtype == torch.float32)