Spaces:
Runtime error
Runtime error
import unittest | |
from pathlib import Path | |
from tempfile import TemporaryDirectory | |
from transformers import AutoConfig, TFGPT2LMHeadModel, is_keras_nlp_available, is_tf_available | |
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer | |
from transformers.testing_utils import require_keras_nlp, require_tf, slow | |
if is_tf_available(): | |
import tensorflow as tf | |
if is_keras_nlp_available(): | |
from transformers.models.gpt2 import TFGPT2Tokenizer | |
TOKENIZER_CHECKPOINTS = ["gpt2"] | |
TINY_MODEL_CHECKPOINT = "gpt2" | |
if is_tf_available(): | |
class ModelToSave(tf.Module): | |
def __init__(self, tokenizer): | |
super().__init__() | |
self.tokenizer = tokenizer | |
config = AutoConfig.from_pretrained(TINY_MODEL_CHECKPOINT) | |
self.model = TFGPT2LMHeadModel.from_config(config) | |
def serving(self, text): | |
tokenized = self.tokenizer(text) | |
input_ids_dense = tokenized["input_ids"].to_tensor() | |
input_mask = tf.cast(input_ids_dense > 0, tf.int32) | |
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) | |
outputs = self.model(input_ids=input_ids_dense, attention_mask=input_mask)["logits"] | |
return outputs | |
class GPTTokenizationTest(unittest.TestCase): | |
# The TF tokenizers are usually going to be used as pretrained tokenizers from existing model checkpoints, | |
# so that's what we focus on here. | |
def setUp(self): | |
super().setUp() | |
self.tokenizers = [GPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in (TOKENIZER_CHECKPOINTS)] | |
self.tf_tokenizers = [TFGPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS] | |
assert len(self.tokenizers) == len(self.tf_tokenizers) | |
self.test_sentences = [ | |
"This is a straightforward English test sentence.", | |
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", | |
"Now we're going to add some Chinese: 一 二 三 一二三", | |
"And some much more rare Chinese: 齉 堃 齉堃", | |
"Je vais aussi écrire en français pour tester les accents", | |
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", | |
] | |
self.paired_sentences = list(zip(self.test_sentences, self.test_sentences[::-1])) | |
def test_output_equivalence(self): | |
for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): | |
for test_inputs in self.test_sentences: | |
python_outputs = tokenizer([test_inputs], return_tensors="tf") | |
tf_outputs = tf_tokenizer([test_inputs]) | |
for key in python_outputs.keys(): | |
# convert them to numpy to avoid messing with ragged tensors | |
python_outputs_values = python_outputs[key].numpy() | |
tf_outputs_values = tf_outputs[key].numpy() | |
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) | |
self.assertTrue(tf.reduce_all(tf.cast(python_outputs_values, tf.int64) == tf_outputs_values)) | |
def test_graph_mode(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
compiled_tokenizer = tf.function(tf_tokenizer) | |
for test_inputs in self.test_sentences: | |
test_inputs = tf.constant(test_inputs) | |
compiled_outputs = compiled_tokenizer(test_inputs) | |
eager_outputs = tf_tokenizer(test_inputs) | |
for key in eager_outputs.keys(): | |
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) | |
def test_saved_model(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
model = ModelToSave(tokenizer=tf_tokenizer) | |
test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) | |
out = model.serving(test_inputs) # Build model with some sample inputs | |
with TemporaryDirectory() as tempdir: | |
save_path = Path(tempdir) / "saved.model" | |
tf.saved_model.save(model, save_path, signatures={"serving_default": model.serving}) | |
loaded_model = tf.saved_model.load(save_path) | |
loaded_output = loaded_model.signatures["serving_default"](test_inputs)["output_0"] | |
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test | |
self.assertTrue(tf.reduce_all(out == loaded_output)) | |
def test_from_config(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) | |
out = tf_tokenizer(test_inputs) # Build model with some sample inputs | |
config = tf_tokenizer.get_config() | |
model_from_config = TFGPT2Tokenizer.from_config(config) | |
from_config_output = model_from_config(test_inputs) | |
for key in from_config_output.keys(): | |
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) | |
def test_padding(self): | |
for tf_tokenizer in self.tf_tokenizers: | |
# for the test to run | |
tf_tokenizer.pad_token_id = 123123 | |
for max_length in [3, 5, 1024]: | |
test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) | |
out = tf_tokenizer(test_inputs, max_length=max_length) | |
out_length = out["input_ids"].numpy().shape[1] | |
assert out_length == max_length | |