File size: 5,692 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory

from transformers import AutoConfig, TFGPT2LMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow


if is_tf_available():
    import tensorflow as tf

if is_keras_nlp_available():
    from transformers.models.gpt2 import TFGPT2Tokenizer


TOKENIZER_CHECKPOINTS = ["gpt2"]
TINY_MODEL_CHECKPOINT = "gpt2"

if is_tf_available():

    class ModelToSave(tf.Module):
        def __init__(self, tokenizer):
            super().__init__()
            self.tokenizer = tokenizer
            config = AutoConfig.from_pretrained(TINY_MODEL_CHECKPOINT)
            self.model = TFGPT2LMHeadModel.from_config(config)

        @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name="text"),))
        def serving(self, text):
            tokenized = self.tokenizer(text)
            input_ids_dense = tokenized["input_ids"].to_tensor()

            input_mask = tf.cast(input_ids_dense > 0, tf.int32)
            # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])

            outputs = self.model(input_ids=input_ids_dense, attention_mask=input_mask)["logits"]

            return outputs


@require_tf
@require_keras_nlp
class GPTTokenizationTest(unittest.TestCase):
    # The TF tokenizers are usually going to be used as pretrained tokenizers from existing model checkpoints,
    # so that's what we focus on here.

    def setUp(self):
        super().setUp()

        self.tokenizers = [GPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in (TOKENIZER_CHECKPOINTS)]
        self.tf_tokenizers = [TFGPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS]
        assert len(self.tokenizers) == len(self.tf_tokenizers)

        self.test_sentences = [
            "This is a straightforward English test sentence.",
            "This one has some weird characters\rto\nsee\r\nif  those\u00E9break things.",
            "Now we're going to add some Chinese: 一 二 三 一二三",
            "And some much more rare Chinese: 齉 堃 齉堃",
            "Je vais aussi écrire en français pour tester les accents",
            "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
        ]
        self.paired_sentences = list(zip(self.test_sentences, self.test_sentences[::-1]))

    def test_output_equivalence(self):
        for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers):
            for test_inputs in self.test_sentences:
                python_outputs = tokenizer([test_inputs], return_tensors="tf")
                tf_outputs = tf_tokenizer([test_inputs])

                for key in python_outputs.keys():
                    # convert them to numpy to avoid messing with ragged tensors
                    python_outputs_values = python_outputs[key].numpy()
                    tf_outputs_values = tf_outputs[key].numpy()

                    self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape))
                    self.assertTrue(tf.reduce_all(tf.cast(python_outputs_values, tf.int64) == tf_outputs_values))

    @slow
    def test_graph_mode(self):
        for tf_tokenizer in self.tf_tokenizers:
            compiled_tokenizer = tf.function(tf_tokenizer)
            for test_inputs in self.test_sentences:
                test_inputs = tf.constant(test_inputs)
                compiled_outputs = compiled_tokenizer(test_inputs)
                eager_outputs = tf_tokenizer(test_inputs)

                for key in eager_outputs.keys():
                    self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key]))

    @slow
    def test_saved_model(self):
        for tf_tokenizer in self.tf_tokenizers:
            model = ModelToSave(tokenizer=tf_tokenizer)
            test_inputs = tf.convert_to_tensor([self.test_sentences[0]])
            out = model.serving(test_inputs)  # Build model with some sample inputs
            with TemporaryDirectory() as tempdir:
                save_path = Path(tempdir) / "saved.model"
                tf.saved_model.save(model, save_path, signatures={"serving_default": model.serving})
                loaded_model = tf.saved_model.load(save_path)
            loaded_output = loaded_model.signatures["serving_default"](test_inputs)["output_0"]
            # We may see small differences because the loaded model is compiled, so we need an epsilon for the test
            self.assertTrue(tf.reduce_all(out == loaded_output))

    @slow
    def test_from_config(self):
        for tf_tokenizer in self.tf_tokenizers:
            test_inputs = tf.convert_to_tensor([self.test_sentences[0]])
            out = tf_tokenizer(test_inputs)  # Build model with some sample inputs

            config = tf_tokenizer.get_config()
            model_from_config = TFGPT2Tokenizer.from_config(config)
            from_config_output = model_from_config(test_inputs)

            for key in from_config_output.keys():
                self.assertTrue(tf.reduce_all(from_config_output[key] == out[key]))

    @slow
    def test_padding(self):
        for tf_tokenizer in self.tf_tokenizers:
            # for the test to run
            tf_tokenizer.pad_token_id = 123123

            for max_length in [3, 5, 1024]:
                test_inputs = tf.convert_to_tensor([self.test_sentences[0]])
                out = tf_tokenizer(test_inputs, max_length=max_length)

                out_length = out["input_ids"].numpy().shape[1]

                assert out_length == max_length