Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import unittest | |
from transformers import AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast | |
from transformers.models.gpt2.tokenization_gpt2 import VOCAB_FILES_NAMES | |
from transformers.testing_utils import require_tokenizers | |
from ...test_tokenization_common import TokenizerTesterMixin | |
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = GPT2Tokenizer | |
rust_tokenizer_class = GPT2TokenizerFast | |
test_rust_tokenizer = True | |
from_pretrained_kwargs = {"add_prefix_space": True} | |
test_seq2seq = False | |
def setUp(self): | |
super().setUp() | |
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
vocab = [ | |
"l", | |
"o", | |
"w", | |
"e", | |
"r", | |
"s", | |
"t", | |
"i", | |
"d", | |
"n", | |
"\u0120", | |
"\u0120l", | |
"\u0120n", | |
"\u0120lo", | |
"\u0120low", | |
"er", | |
"\u0120lowest", | |
"\u0120newer", | |
"\u0120wider", | |
"<unk>", | |
"<|endoftext|>", | |
] | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] | |
self.special_tokens_map = {"unk_token": "<unk>"} | |
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
fp.write(json.dumps(vocab_tokens) + "\n") | |
with open(self.merges_file, "w", encoding="utf-8") as fp: | |
fp.write("\n".join(merges)) | |
def get_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs) | |
def get_rust_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
return GPT2TokenizerFast.from_pretrained(self.tmpdirname, **kwargs) | |
def get_input_output_texts(self, tokenizer): | |
input_text = "lower newer" | |
output_text = "lower newer" | |
return input_text, output_text | |
def test_full_tokenizer(self): | |
tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) | |
text = "lower newer" | |
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] | |
tokens = tokenizer.tokenize(text, add_prefix_space=True) | |
self.assertListEqual(tokens, bpe_tokens) | |
input_tokens = tokens + [tokenizer.unk_token] | |
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] | |
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
def test_rust_and_python_full_tokenizers(self): | |
if not self.test_rust_tokenizer: | |
return | |
tokenizer = self.get_tokenizer() | |
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) | |
sequence = "lower newer" | |
# Testing tokenization | |
tokens = tokenizer.tokenize(sequence, add_prefix_space=True) | |
rust_tokens = rust_tokenizer.tokenize(sequence) | |
self.assertListEqual(tokens, rust_tokens) | |
# Testing conversion to ids without special tokens | |
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) | |
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) | |
self.assertListEqual(ids, rust_ids) | |
# Testing conversion to ids with special tokens | |
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) | |
ids = tokenizer.encode(sequence, add_prefix_space=True) | |
rust_ids = rust_tokenizer.encode(sequence) | |
self.assertListEqual(ids, rust_ids) | |
# Testing the unknown token | |
input_tokens = tokens + [rust_tokenizer.unk_token] | |
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] | |
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
def test_pretokenized_inputs(self, *args, **kwargs): | |
# It's very difficult to mix/test pretokenization with byte-level | |
# And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) | |
pass | |
def test_padding(self, max_length=15): | |
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
# Simple input | |
s = "This is a simple input" | |
s2 = ["This is a simple input 1", "This is a simple input 2"] | |
p = ("This is a simple input", "This is a pair") | |
p2 = [ | |
("This is a simple input 1", "This is a simple input 2"), | |
("This is a simple pair 1", "This is a simple pair 2"), | |
] | |
# Simple input tests | |
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") | |
# Simple input | |
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") | |
# Simple input | |
self.assertRaises( | |
ValueError, | |
tokenizer_r.batch_encode_plus, | |
s2, | |
max_length=max_length, | |
padding="max_length", | |
) | |
# Pair input | |
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") | |
# Pair input | |
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") | |
# Pair input | |
self.assertRaises( | |
ValueError, | |
tokenizer_r.batch_encode_plus, | |
p2, | |
max_length=max_length, | |
padding="max_length", | |
) | |
def test_padding_if_pad_token_set_slow(self): | |
tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>") | |
# Simple input | |
s = "This is a simple input" | |
s2 = ["This is a simple input looooooooong", "This is a simple input"] | |
p = ("This is a simple input", "This is a pair") | |
p2 = [ | |
("This is a simple input loooooong", "This is a simple input"), | |
("This is a simple pair loooooong", "This is a simple pair"), | |
] | |
pad_token_id = tokenizer.pad_token_id | |
out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np") | |
out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np") | |
out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np") | |
out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np") | |
# s | |
# test single string max_length padding | |
self.assertEqual(out_s["input_ids"].shape[-1], 30) | |
self.assertTrue(pad_token_id in out_s["input_ids"]) | |
self.assertTrue(0 in out_s["attention_mask"]) | |
# s2 | |
# test automatic padding | |
self.assertEqual(out_s2["input_ids"].shape[-1], 33) | |
# long slice doesn't have padding | |
self.assertFalse(pad_token_id in out_s2["input_ids"][0]) | |
self.assertFalse(0 in out_s2["attention_mask"][0]) | |
# short slice does have padding | |
self.assertTrue(pad_token_id in out_s2["input_ids"][1]) | |
self.assertTrue(0 in out_s2["attention_mask"][1]) | |
# p | |
# test single pair max_length padding | |
self.assertEqual(out_p["input_ids"].shape[-1], 60) | |
self.assertTrue(pad_token_id in out_p["input_ids"]) | |
self.assertTrue(0 in out_p["attention_mask"]) | |
# p2 | |
# test automatic padding pair | |
self.assertEqual(out_p2["input_ids"].shape[-1], 52) | |
# long slice pair doesn't have padding | |
self.assertFalse(pad_token_id in out_p2["input_ids"][0]) | |
self.assertFalse(0 in out_p2["attention_mask"][0]) | |
# short slice pair does have padding | |
self.assertTrue(pad_token_id in out_p2["input_ids"][1]) | |
self.assertTrue(0 in out_p2["attention_mask"][1]) | |
def test_add_bos_token_slow(self): | |
bos_token = "$$$" | |
tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True) | |
s = "This is a simple input" | |
s2 = ["This is a simple input 1", "This is a simple input 2"] | |
bos_token_id = tokenizer.bos_token_id | |
out_s = tokenizer(s) | |
out_s2 = tokenizer(s2) | |
self.assertEqual(out_s.input_ids[0], bos_token_id) | |
self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids)) | |
decode_s = tokenizer.decode(out_s.input_ids) | |
decode_s2 = tokenizer.batch_decode(out_s2.input_ids) | |
self.assertEqual(decode_s.split()[0], bos_token) | |
self.assertTrue(all(d.split()[0] == bos_token for d in decode_s2)) | |
# tokenizer has no padding token | |
def test_padding_different_model_input_name(self): | |
pass | |
def test_special_tokens_mask_input_pairs_and_bos_token(self): | |
# TODO: change to self.get_tokenizers() when the fast version is implemented | |
tokenizers = [self.get_tokenizer(do_lower_case=False, add_bos_token=True)] | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
sequence_0 = "Encode this." | |
sequence_1 = "This one too please." | |
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) | |
encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False) | |
encoded_sequence_dict = tokenizer.encode_plus( | |
sequence_0, | |
sequence_1, | |
add_special_tokens=True, | |
return_special_tokens_mask=True, | |
) | |
encoded_sequence_w_special = encoded_sequence_dict["input_ids"] | |
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] | |
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) | |
filtered_sequence = [ | |
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) | |
] | |
filtered_sequence = [x for x in filtered_sequence if x is not None] | |
self.assertEqual(encoded_sequence, filtered_sequence) | |
class OPTTokenizationTest(unittest.TestCase): | |
def test_serialize_deserialize_fast_opt(self): | |
# More context: | |
# https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 | |
# https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 | |
# https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 | |
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True) | |
text = "A photo of a cat" | |
tokens_ids = tokenizer.encode( | |
text, | |
) | |
self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758]) | |
tokenizer.save_pretrained("test_opt") | |
tokenizer = AutoTokenizer.from_pretrained("./test_opt") | |
tokens_ids = tokenizer.encode( | |
text, | |
) | |
self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758]) | |
def test_fast_slow_equivalence(self): | |
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=True) | |
text = "A photo of a cat" | |
tokens_ids = tokenizer.encode( | |
text, | |
) | |
# Same as above | |
self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758]) | |
def test_users_can_modify_bos(self): | |
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True) | |
tokenizer.bos_token = "bos" | |
tokenizer.bos_token_id = tokenizer.get_vocab()["bos"] | |
text = "A photo of a cat" | |
tokens_ids = tokenizer.encode( | |
text, | |
) | |
# We changed the bos token | |
self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758]) | |
tokenizer.save_pretrained("./tok") | |
tokenizer = AutoTokenizer.from_pretrained("./tok") | |
self.assertTrue(tokenizer.is_fast) | |
tokens_ids = tokenizer.encode( | |
text, | |
) | |
self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758]) | |