File size: 13,430 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import unittest

from transformers import AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers

from ...test_tokenization_common import TokenizerTesterMixin


@require_tokenizers
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = GPT2Tokenizer
    rust_tokenizer_class = GPT2TokenizerFast
    test_rust_tokenizer = True
    from_pretrained_kwargs = {"add_prefix_space": True}
    test_seq2seq = False

    def setUp(self):
        super().setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
            "<|endoftext|>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2TokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        input_text = "lower newer"
        output_text = "lower newer"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
        text = "lower newer"
        bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
        tokens = tokenizer.tokenize(text, add_prefix_space=True)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)

        sequence = "lower newer"

        # Testing tokenization
        tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        # Testing conversion to ids without special tokens
        ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        # Testing conversion to ids with special tokens
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
        ids = tokenizer.encode(sequence, add_prefix_space=True)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

        # Testing the unknown token
        input_tokens = tokens + [rust_tokenizer.unk_token]
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
        self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    def test_pretokenized_inputs(self, *args, **kwargs):
        # It's very difficult to mix/test pretokenization with byte-level
        # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
        pass

    def test_padding(self, max_length=15):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Simple input
                s = "This is a simple input"
                s2 = ["This is a simple input 1", "This is a simple input 2"]
                p = ("This is a simple input", "This is a pair")
                p2 = [
                    ("This is a simple input 1", "This is a simple input 2"),
                    ("This is a simple pair 1", "This is a simple pair 2"),
                ]

                # Simple input tests
                self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    s2,
                    max_length=max_length,
                    padding="max_length",
                )

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    p2,
                    max_length=max_length,
                    padding="max_length",
                )

    def test_padding_if_pad_token_set_slow(self):
        tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>")

        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input looooooooong", "This is a simple input"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input loooooong", "This is a simple input"),
            ("This is a simple pair loooooong", "This is a simple pair"),
        ]

        pad_token_id = tokenizer.pad_token_id

        out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np")
        out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np")
        out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np")
        out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np")

        # s
        # test single string max_length padding
        self.assertEqual(out_s["input_ids"].shape[-1], 30)
        self.assertTrue(pad_token_id in out_s["input_ids"])
        self.assertTrue(0 in out_s["attention_mask"])

        # s2
        # test automatic padding
        self.assertEqual(out_s2["input_ids"].shape[-1], 33)
        # long slice doesn't have padding
        self.assertFalse(pad_token_id in out_s2["input_ids"][0])
        self.assertFalse(0 in out_s2["attention_mask"][0])
        # short slice does have padding
        self.assertTrue(pad_token_id in out_s2["input_ids"][1])
        self.assertTrue(0 in out_s2["attention_mask"][1])

        # p
        # test single pair max_length padding
        self.assertEqual(out_p["input_ids"].shape[-1], 60)
        self.assertTrue(pad_token_id in out_p["input_ids"])
        self.assertTrue(0 in out_p["attention_mask"])

        # p2
        # test automatic padding pair
        self.assertEqual(out_p2["input_ids"].shape[-1], 52)
        # long slice pair doesn't have padding
        self.assertFalse(pad_token_id in out_p2["input_ids"][0])
        self.assertFalse(0 in out_p2["attention_mask"][0])
        # short slice pair does have padding
        self.assertTrue(pad_token_id in out_p2["input_ids"][1])
        self.assertTrue(0 in out_p2["attention_mask"][1])

    def test_add_bos_token_slow(self):
        bos_token = "$$$"
        tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True)

        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]

        bos_token_id = tokenizer.bos_token_id

        out_s = tokenizer(s)
        out_s2 = tokenizer(s2)

        self.assertEqual(out_s.input_ids[0], bos_token_id)
        self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids))

        decode_s = tokenizer.decode(out_s.input_ids)
        decode_s2 = tokenizer.batch_decode(out_s2.input_ids)

        self.assertEqual(decode_s.split()[0], bos_token)
        self.assertTrue(all(d.split()[0] == bos_token for d in decode_s2))

    # tokenizer has no padding token
    def test_padding_different_model_input_name(self):
        pass

    def test_special_tokens_mask_input_pairs_and_bos_token(self):
        # TODO: change to self.get_tokenizers() when the fast version is implemented
        tokenizers = [self.get_tokenizer(do_lower_case=False, add_bos_token=True)]
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)


@require_tokenizers
class OPTTokenizationTest(unittest.TestCase):
    def test_serialize_deserialize_fast_opt(self):
        # More context:
        # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1
        # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519
        # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439

        tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True)
        text = "A photo of a cat"

        tokens_ids = tokenizer.encode(
            text,
        )
        self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])
        tokenizer.save_pretrained("test_opt")

        tokenizer = AutoTokenizer.from_pretrained("./test_opt")
        tokens_ids = tokenizer.encode(
            text,
        )
        self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])

    def test_fast_slow_equivalence(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=True)
        text = "A photo of a cat"

        tokens_ids = tokenizer.encode(
            text,
        )
        # Same as above
        self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])

    @unittest.skip("This test is failing because of a bug in the fast tokenizer")
    def test_users_can_modify_bos(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True)

        tokenizer.bos_token = "bos"
        tokenizer.bos_token_id = tokenizer.get_vocab()["bos"]

        text = "A photo of a cat"
        tokens_ids = tokenizer.encode(
            text,
        )
        # We changed the bos token
        self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758])
        tokenizer.save_pretrained("./tok")
        tokenizer = AutoTokenizer.from_pretrained("./tok")
        self.assertTrue(tokenizer.is_fast)
        tokens_ids = tokenizer.encode(
            text,
        )
        self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758])