Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 Huggingface | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import timeout_decorator # noqa | |
from parameterized import parameterized | |
from transformers import FSMTConfig, is_torch_available | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
from transformers.utils import cached_property | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer | |
from transformers.models.fsmt.modeling_fsmt import ( | |
SinusoidalPositionalEmbedding, | |
_prepare_fsmt_decoder_inputs, | |
invert_mask, | |
shift_tokens_right, | |
) | |
from transformers.pipelines import TranslationPipeline | |
class FSMTModelTester: | |
def __init__( | |
self, | |
parent, | |
src_vocab_size=99, | |
tgt_vocab_size=99, | |
langs=["ru", "en"], | |
batch_size=13, | |
seq_length=7, | |
is_training=False, | |
use_labels=False, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=4, | |
hidden_act="relu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=20, | |
bos_token_id=0, | |
pad_token_id=1, | |
eos_token_id=2, | |
): | |
self.parent = parent | |
self.src_vocab_size = src_vocab_size | |
self.tgt_vocab_size = tgt_vocab_size | |
self.langs = langs | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.bos_token_id = bos_token_id | |
self.pad_token_id = pad_token_id | |
self.eos_token_id = eos_token_id | |
torch.manual_seed(0) | |
# hack needed for modeling_common tests - despite not really having this attribute in this model | |
self.vocab_size = self.src_vocab_size | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp( | |
3, | |
) | |
input_ids[:, -1] = 2 # Eos Token | |
config = self.get_config() | |
inputs_dict = prepare_fsmt_inputs_dict(config, input_ids) | |
return config, inputs_dict | |
def get_config(self): | |
return FSMTConfig( | |
vocab_size=self.src_vocab_size, # hack needed for common tests | |
src_vocab_size=self.src_vocab_size, | |
tgt_vocab_size=self.tgt_vocab_size, | |
langs=self.langs, | |
d_model=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"] | |
inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"] | |
inputs_dict["use_cache"] = False | |
return config, inputs_dict | |
def prepare_fsmt_inputs_dict( | |
config, | |
input_ids, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
): | |
if attention_mask is None: | |
attention_mask = input_ids.ne(config.pad_token_id) | |
if head_mask is None: | |
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) | |
if decoder_head_mask is None: | |
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
if cross_attn_head_mask is None: | |
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
return { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
} | |
class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else () | |
all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"conversational": FSMTForConditionalGeneration, | |
"feature-extraction": FSMTModel, | |
"summarization": FSMTForConditionalGeneration, | |
"text2text-generation": FSMTForConditionalGeneration, | |
"translation": FSMTForConditionalGeneration, | |
} | |
if is_torch_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
test_pruning = False | |
test_missing_keys = False | |
def setUp(self): | |
self.model_tester = FSMTModelTester(self) | |
self.langs = ["en", "ru"] | |
config = { | |
"langs": self.langs, | |
"src_vocab_size": 10, | |
"tgt_vocab_size": 20, | |
} | |
# XXX: hack to appease to all other models requiring `vocab_size` | |
config["vocab_size"] = 99 # no such thing in FSMT | |
self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
# XXX: override test_model_common_attributes / different Embedding type | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding)) | |
model.set_input_embeddings(nn.Embedding(10, 10)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.modules.sparse.Embedding)) | |
def test_initialization_more(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
model = FSMTModel(config) | |
model.to(torch_device) | |
model.eval() | |
# test init | |
# self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item()) | |
def _check_var(module): | |
"""Check that we initialized various parameters from N(0, config.init_std).""" | |
self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2) | |
_check_var(model.encoder.embed_tokens) | |
_check_var(model.encoder.layers[0].self_attn.k_proj) | |
_check_var(model.encoder.layers[0].fc1) | |
# XXX: different std for fairseq version of SinusoidalPositionalEmbedding | |
# self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2) | |
def test_advanced_inputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
config.use_cache = False | |
inputs_dict["input_ids"][:, -2:] = config.pad_token_id | |
decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs( | |
config, inputs_dict["input_ids"] | |
) | |
model = FSMTModel(config).to(torch_device).eval() | |
decoder_features_with_created_mask = model(**inputs_dict)[0] | |
decoder_features_with_passed_mask = model( | |
decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict | |
)[0] | |
_assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask) | |
useless_mask = torch.zeros_like(decoder_attn_mask) | |
decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0] | |
self.assertTrue(isinstance(decoder_features, torch.Tensor)) # no hidden states or attentions | |
self.assertEqual( | |
decoder_features.size(), | |
(self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size), | |
) | |
if decoder_attn_mask.min().item() < -1e3: # some tokens were masked | |
self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item()) | |
# Test different encoder attention masks | |
decoder_features_with_long_encoder_mask = model( | |
inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long() | |
)[0] | |
_assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask) | |
def test_save_load_missing_keys(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_export_to_onnx(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
model = FSMTModel(config).to(torch_device) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
torch.onnx.export( | |
model, | |
(inputs_dict["input_ids"], inputs_dict["attention_mask"]), | |
f"{tmpdirname}/fsmt_test.onnx", | |
export_params=True, | |
opset_version=12, | |
input_names=["input_ids", "attention_mask"], | |
) | |
def test_resize_tokens_embeddings(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_tie_model_weights(self): | |
pass | |
def test_resize_embeddings_untied(self): | |
pass | |
class FSMTHeadTests(unittest.TestCase): | |
src_vocab_size = 99 | |
tgt_vocab_size = 99 | |
langs = ["ru", "en"] | |
def _get_config(self): | |
return FSMTConfig( | |
src_vocab_size=self.src_vocab_size, | |
tgt_vocab_size=self.tgt_vocab_size, | |
langs=self.langs, | |
d_model=24, | |
encoder_layers=2, | |
decoder_layers=2, | |
encoder_attention_heads=2, | |
decoder_attention_heads=2, | |
encoder_ffn_dim=32, | |
decoder_ffn_dim=32, | |
max_position_embeddings=48, | |
eos_token_id=2, | |
pad_token_id=1, | |
bos_token_id=0, | |
) | |
def _get_config_and_data(self): | |
input_ids = torch.tensor( | |
[ | |
[71, 82, 18, 33, 46, 91, 2], | |
[68, 34, 26, 58, 30, 82, 2], | |
[5, 97, 17, 39, 94, 40, 2], | |
[76, 83, 94, 25, 70, 78, 2], | |
[87, 59, 41, 35, 48, 66, 2], | |
[55, 13, 16, 58, 5, 2, 1], # note padding | |
[64, 27, 31, 51, 12, 75, 2], | |
[52, 64, 86, 17, 83, 39, 2], | |
[48, 61, 9, 24, 71, 82, 2], | |
[26, 1, 60, 48, 22, 13, 2], | |
[21, 5, 62, 28, 14, 76, 2], | |
[45, 98, 37, 86, 59, 48, 2], | |
[70, 70, 50, 9, 28, 0, 2], | |
], | |
dtype=torch.long, | |
device=torch_device, | |
) | |
batch_size = input_ids.shape[0] | |
config = self._get_config() | |
return config, input_ids, batch_size | |
def test_generate_beam_search(self): | |
input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], dtype=torch.long, device=torch_device) | |
config = self._get_config() | |
lm_model = FSMTForConditionalGeneration(config).to(torch_device) | |
lm_model.eval() | |
max_length = 5 | |
new_input_ids = lm_model.generate( | |
input_ids.clone(), | |
do_sample=True, | |
num_return_sequences=1, | |
num_beams=2, | |
no_repeat_ngram_size=3, | |
max_length=max_length, | |
) | |
self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length)) | |
def test_shift_tokens_right(self): | |
input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long) | |
shifted = shift_tokens_right(input_ids, 1) | |
n_pad_before = input_ids.eq(1).float().sum() | |
n_pad_after = shifted.eq(1).float().sum() | |
self.assertEqual(shifted.shape, input_ids.shape) | |
self.assertEqual(n_pad_after, n_pad_before - 1) | |
self.assertTrue(torch.eq(shifted[:, 0], 2).all()) | |
def test_generate_fp16(self): | |
config, input_ids, batch_size = self._get_config_and_data() | |
attention_mask = input_ids.ne(1).to(torch_device) | |
model = FSMTForConditionalGeneration(config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
def test_dummy_inputs(self): | |
config, *_ = self._get_config_and_data() | |
model = FSMTForConditionalGeneration(config).eval().to(torch_device) | |
model(**model.dummy_inputs) | |
def test_prepare_fsmt_decoder_inputs(self): | |
config, *_ = self._get_config_and_data() | |
input_ids = _long_tensor(([4, 4, 2])) | |
decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]]) | |
causal_mask_dtype = torch.float32 | |
ignore = torch.finfo(causal_mask_dtype).min | |
decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs( | |
config, input_ids, decoder_input_ids, causal_mask_dtype=causal_mask_dtype | |
) | |
expected_causal_mask = torch.tensor( | |
[[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]] # never attend to the final token, because its pad | |
).to(input_ids.device) | |
self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size()) | |
self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all()) | |
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): | |
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" | |
if a is None and b is None: | |
return True | |
try: | |
if torch.allclose(a, b, atol=atol): | |
return True | |
raise | |
except Exception: | |
if len(prefix) > 0: | |
prefix = f"{prefix}: " | |
raise AssertionError(f"{prefix}{a} != {b}") | |
def _long_tensor(tok_lst): | |
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) | |
TOLERANCE = 1e-4 | |
pairs = [ | |
["en-ru"], | |
["ru-en"], | |
["en-de"], | |
["de-en"], | |
] | |
class FSMTModelIntegrationTests(unittest.TestCase): | |
tokenizers_cache = {} | |
models_cache = {} | |
default_mname = "facebook/wmt19-en-ru" | |
def default_tokenizer(self): | |
return self.get_tokenizer(self.default_mname) | |
def default_model(self): | |
return self.get_model(self.default_mname) | |
def get_tokenizer(self, mname): | |
if mname not in self.tokenizers_cache: | |
self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname) | |
return self.tokenizers_cache[mname] | |
def get_model(self, mname): | |
if mname not in self.models_cache: | |
self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device) | |
if torch_device == "cuda": | |
self.models_cache[mname].half() | |
return self.models_cache[mname] | |
def test_inference_no_head(self): | |
tokenizer = self.default_tokenizer | |
model = FSMTModel.from_pretrained(self.default_mname).to(torch_device) | |
src_text = "My friend computer will translate this for me" | |
input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"] | |
input_ids = _long_tensor(input_ids).to(torch_device) | |
inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids) | |
with torch.no_grad(): | |
output = model(**inputs_dict)[0] | |
expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size)) | |
self.assertEqual(output.shape, expected_shape) | |
# expected numbers were generated when en-ru model, using just fairseq's model4.pt | |
# may have to adjust if switched to a different checkpoint | |
expected_slice = torch.tensor( | |
[[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) | |
def translation_setup(self, pair): | |
text = { | |
"en": "Machine learning is great, isn't it?", | |
"ru": "Машинное обучение - это здорово, не так ли?", | |
"de": "Maschinelles Lernen ist großartig, oder?", | |
} | |
src, tgt = pair.split("-") | |
print(f"Testing {src} -> {tgt}") | |
mname = f"facebook/wmt19-{pair}" | |
src_text = text[src] | |
tgt_text = text[tgt] | |
tokenizer = self.get_tokenizer(mname) | |
model = self.get_model(mname) | |
return tokenizer, model, src_text, tgt_text | |
def test_translation_direct(self, pair): | |
tokenizer, model, src_text, tgt_text = self.translation_setup(pair) | |
input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device) | |
outputs = model.generate(input_ids) | |
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n" | |
def test_translation_pipeline(self, pair): | |
tokenizer, model, src_text, tgt_text = self.translation_setup(pair) | |
device = 0 if torch_device == "cuda" else -1 | |
pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device) | |
output = pipeline([src_text]) | |
self.assertEqual([tgt_text], [x["translation_text"] for x in output]) | |
class TestSinusoidalPositionalEmbeddings(unittest.TestCase): | |
padding_idx = 1 | |
tolerance = 1e-4 | |
def test_basic(self): | |
input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device) | |
emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to( | |
torch_device | |
) | |
emb = emb1(input_ids) | |
desired_weights = torch.tensor( | |
[ | |
[9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00], | |
[1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00], | |
] | |
).to(torch_device) | |
self.assertTrue( | |
torch.allclose(emb[0], desired_weights, atol=self.tolerance), | |
msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n", | |
) | |
def test_odd_embed_dim(self): | |
# odd embedding_dim is allowed | |
SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device) | |
# odd num_embeddings is allowed | |
SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device) | |
def test_positional_emb_weights_against_marian(self): | |
desired_weights = torch.tensor( | |
[ | |
[0, 0, 0, 0, 0], | |
[0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374], | |
[0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258], | |
] | |
) | |
emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to( | |
torch_device | |
) | |
weights = emb1.weights.data[:3, :5] | |
# XXX: only the 1st and 3rd lines match - this is testing against | |
# verbatim copy of SinusoidalPositionalEmbedding from fairseq | |
self.assertTrue( | |
torch.allclose(weights, desired_weights, atol=self.tolerance), | |
msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n", | |
) | |
# test that forward pass is just a lookup, there is no ignore padding logic | |
input_ids = torch.tensor( | |
[[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device | |
) | |
no_cache_pad_zero = emb1(input_ids)[0] | |
# XXX: only the 1st line matches the 3rd | |
self.assertTrue( | |
torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3) | |
) | |