Spaces:
Runtime error
Runtime error
File size: 22,524 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import timeout_decorator # noqa
from parameterized import parameterized
from transformers import FSMTConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer
from transformers.models.fsmt.modeling_fsmt import (
SinusoidalPositionalEmbedding,
_prepare_fsmt_decoder_inputs,
invert_mask,
shift_tokens_right,
)
from transformers.pipelines import TranslationPipeline
class FSMTModelTester:
def __init__(
self,
parent,
src_vocab_size=99,
tgt_vocab_size=99,
langs=["ru", "en"],
batch_size=13,
seq_length=7,
is_training=False,
use_labels=False,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="relu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
bos_token_id=0,
pad_token_id=1,
eos_token_id=2,
):
self.parent = parent
self.src_vocab_size = src_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.langs = langs
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.eos_token_id = eos_token_id
torch.manual_seed(0)
# hack needed for modeling_common tests - despite not really having this attribute in this model
self.vocab_size = self.src_vocab_size
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp(
3,
)
input_ids[:, -1] = 2 # Eos Token
config = self.get_config()
inputs_dict = prepare_fsmt_inputs_dict(config, input_ids)
return config, inputs_dict
def get_config(self):
return FSMTConfig(
vocab_size=self.src_vocab_size, # hack needed for common tests
src_vocab_size=self.src_vocab_size,
tgt_vocab_size=self.tgt_vocab_size,
langs=self.langs,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"]
inputs_dict["use_cache"] = False
return config, inputs_dict
def prepare_fsmt_inputs_dict(
config,
input_ids,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_torch
class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": FSMTForConditionalGeneration,
"feature-extraction": FSMTModel,
"summarization": FSMTForConditionalGeneration,
"text2text-generation": FSMTForConditionalGeneration,
"translation": FSMTForConditionalGeneration,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = FSMTModelTester(self)
self.langs = ["en", "ru"]
config = {
"langs": self.langs,
"src_vocab_size": 10,
"tgt_vocab_size": 20,
}
# XXX: hack to appease to all other models requiring `vocab_size`
config["vocab_size"] = 99 # no such thing in FSMT
self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config)
def test_config(self):
self.config_tester.run_common_tests()
# XXX: override test_model_common_attributes / different Embedding type
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding))
model.set_input_embeddings(nn.Embedding(10, 10))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.modules.sparse.Embedding))
def test_initialization_more(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
model = FSMTModel(config)
model.to(torch_device)
model.eval()
# test init
# self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())
def _check_var(module):
"""Check that we initialized various parameters from N(0, config.init_std)."""
self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)
_check_var(model.encoder.embed_tokens)
_check_var(model.encoder.layers[0].self_attn.k_proj)
_check_var(model.encoder.layers[0].fc1)
# XXX: different std for fairseq version of SinusoidalPositionalEmbedding
# self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2)
def test_advanced_inputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_cache = False
inputs_dict["input_ids"][:, -2:] = config.pad_token_id
decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
config, inputs_dict["input_ids"]
)
model = FSMTModel(config).to(torch_device).eval()
decoder_features_with_created_mask = model(**inputs_dict)[0]
decoder_features_with_passed_mask = model(
decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict
)[0]
_assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask)
useless_mask = torch.zeros_like(decoder_attn_mask)
decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0]
self.assertTrue(isinstance(decoder_features, torch.Tensor)) # no hidden states or attentions
self.assertEqual(
decoder_features.size(),
(self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size),
)
if decoder_attn_mask.min().item() < -1e3: # some tokens were masked
self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item())
# Test different encoder attention masks
decoder_features_with_long_encoder_mask = model(
inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long()
)[0]
_assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask)
def test_save_load_missing_keys(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
@unittest.skip("Test has a segmentation fault on torch 1.8.0")
def test_export_to_onnx(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
model = FSMTModel(config).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(inputs_dict["input_ids"], inputs_dict["attention_mask"]),
f"{tmpdirname}/fsmt_test.onnx",
export_params=True,
opset_version=12,
input_names=["input_ids", "attention_mask"],
)
@unittest.skip("can't be implemented for FSMT due to dual vocab.")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip("Passing inputs_embeds not implemented for FSMT.")
def test_inputs_embeds(self):
pass
@unittest.skip("model weights aren't tied in FSMT.")
def test_tie_model_weights(self):
pass
@unittest.skip("TODO: Decoder embeddings cannot be resized at the moment")
def test_resize_embeddings_untied(self):
pass
@require_torch
class FSMTHeadTests(unittest.TestCase):
src_vocab_size = 99
tgt_vocab_size = 99
langs = ["ru", "en"]
def _get_config(self):
return FSMTConfig(
src_vocab_size=self.src_vocab_size,
tgt_vocab_size=self.tgt_vocab_size,
langs=self.langs,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
def _get_config_and_data(self):
input_ids = torch.tensor(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=torch.long,
device=torch_device,
)
batch_size = input_ids.shape[0]
config = self._get_config()
return config, input_ids, batch_size
def test_generate_beam_search(self):
input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], dtype=torch.long, device=torch_device)
config = self._get_config()
lm_model = FSMTForConditionalGeneration(config).to(torch_device)
lm_model.eval()
max_length = 5
new_input_ids = lm_model.generate(
input_ids.clone(),
do_sample=True,
num_return_sequences=1,
num_beams=2,
no_repeat_ngram_size=3,
max_length=max_length,
)
self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length))
def test_shift_tokens_right(self):
input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
shifted = shift_tokens_right(input_ids, 1)
n_pad_before = input_ids.eq(1).float().sum()
n_pad_after = shifted.eq(1).float().sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(torch.eq(shifted[:, 0], 2).all())
def test_generate_fp16(self):
config, input_ids, batch_size = self._get_config_and_data()
attention_mask = input_ids.ne(1).to(torch_device)
model = FSMTForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_dummy_inputs(self):
config, *_ = self._get_config_and_data()
model = FSMTForConditionalGeneration(config).eval().to(torch_device)
model(**model.dummy_inputs)
def test_prepare_fsmt_decoder_inputs(self):
config, *_ = self._get_config_and_data()
input_ids = _long_tensor(([4, 4, 2]))
decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]])
causal_mask_dtype = torch.float32
ignore = torch.finfo(causal_mask_dtype).min
decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
config, input_ids, decoder_input_ids, causal_mask_dtype=causal_mask_dtype
)
expected_causal_mask = torch.tensor(
[[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]] # never attend to the final token, because its pad
).to(input_ids.device)
self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size())
self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all())
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
if len(prefix) > 0:
prefix = f"{prefix}: "
raise AssertionError(f"{prefix}{a} != {b}")
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
TOLERANCE = 1e-4
pairs = [
["en-ru"],
["ru-en"],
["en-de"],
["de-en"],
]
@require_torch
@require_sentencepiece
@require_tokenizers
class FSMTModelIntegrationTests(unittest.TestCase):
tokenizers_cache = {}
models_cache = {}
default_mname = "facebook/wmt19-en-ru"
@cached_property
def default_tokenizer(self):
return self.get_tokenizer(self.default_mname)
@cached_property
def default_model(self):
return self.get_model(self.default_mname)
def get_tokenizer(self, mname):
if mname not in self.tokenizers_cache:
self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname)
return self.tokenizers_cache[mname]
def get_model(self, mname):
if mname not in self.models_cache:
self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device)
if torch_device == "cuda":
self.models_cache[mname].half()
return self.models_cache[mname]
@slow
def test_inference_no_head(self):
tokenizer = self.default_tokenizer
model = FSMTModel.from_pretrained(self.default_mname).to(torch_device)
src_text = "My friend computer will translate this for me"
input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"]
input_ids = _long_tensor(input_ids).to(torch_device)
inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids)
with torch.no_grad():
output = model(**inputs_dict)[0]
expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size))
self.assertEqual(output.shape, expected_shape)
# expected numbers were generated when en-ru model, using just fairseq's model4.pt
# may have to adjust if switched to a different checkpoint
expected_slice = torch.tensor(
[[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]]
).to(torch_device)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))
def translation_setup(self, pair):
text = {
"en": "Machine learning is great, isn't it?",
"ru": "Машинное обучение - это здорово, не так ли?",
"de": "Maschinelles Lernen ist großartig, oder?",
}
src, tgt = pair.split("-")
print(f"Testing {src} -> {tgt}")
mname = f"facebook/wmt19-{pair}"
src_text = text[src]
tgt_text = text[tgt]
tokenizer = self.get_tokenizer(mname)
model = self.get_model(mname)
return tokenizer, model, src_text, tgt_text
@parameterized.expand(pairs)
@slow
def test_translation_direct(self, pair):
tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device)
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n"
@parameterized.expand(pairs)
@slow
def test_translation_pipeline(self, pair):
tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
device = 0 if torch_device == "cuda" else -1
pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device)
output = pipeline([src_text])
self.assertEqual([tgt_text], [x["translation_text"] for x in output])
@require_torch
class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
padding_idx = 1
tolerance = 1e-4
def test_basic(self):
input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to(
torch_device
)
emb = emb1(input_ids)
desired_weights = torch.tensor(
[
[9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00],
[1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00],
]
).to(torch_device)
self.assertTrue(
torch.allclose(emb[0], desired_weights, atol=self.tolerance),
msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
)
def test_odd_embed_dim(self):
# odd embedding_dim is allowed
SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device)
# odd num_embeddings is allowed
SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device)
@unittest.skip("different from marian (needs more research)")
def test_positional_emb_weights_against_marian(self):
desired_weights = torch.tensor(
[
[0, 0, 0, 0, 0],
[0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374],
[0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258],
]
)
emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to(
torch_device
)
weights = emb1.weights.data[:3, :5]
# XXX: only the 1st and 3rd lines match - this is testing against
# verbatim copy of SinusoidalPositionalEmbedding from fairseq
self.assertTrue(
torch.allclose(weights, desired_weights, atol=self.tolerance),
msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
)
# test that forward pass is just a lookup, there is no ignore padding logic
input_ids = torch.tensor(
[[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device
)
no_cache_pad_zero = emb1(input_ids)[0]
# XXX: only the 1st line matches the 3rd
self.assertTrue(
torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3)
)
|