Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import numpy as np | |
from torch.utils.data import DataLoader, TensorDataset | |
from tqdm import tqdm | |
import wandb | |
import os | |
import glob | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class FastAutoencoder(nn.Module): | |
def __init__(self, n_dirs: int, d_model: int, k: int, auxk: int, multik: int, dead_steps_threshold: int = 266): | |
super().__init__() | |
self.n_dirs = n_dirs | |
self.d_model = d_model | |
self.k = k | |
self.auxk = auxk | |
self.multik = multik | |
self.dead_steps_threshold = dead_steps_threshold | |
self.encoder = nn.Linear(d_model, n_dirs, bias=False) | |
self.decoder = nn.Linear(n_dirs, d_model, bias=False) | |
self.pre_bias = nn.Parameter(torch.zeros(d_model)) | |
self.latent_bias = nn.Parameter(torch.zeros(n_dirs)) | |
self.stats_last_nonzero = torch.zeros(n_dirs, dtype=torch.long, device=device) | |
def forward(self, x): | |
x = x - self.pre_bias | |
latents_pre_act = self.encoder(x) + self.latent_bias | |
# Main top-k selection | |
topk_values, topk_indices = torch.topk(latents_pre_act, k=self.k, dim=-1) | |
topk_values = F.relu(topk_values) | |
multik_values, multik_indices = torch.topk(latents_pre_act, k=4*self.k, dim=-1) | |
multik_values = F.relu(multik_values) | |
latents = torch.zeros_like(latents_pre_act) | |
latents.scatter_(-1, topk_indices, topk_values) | |
multik_latents = torch.zeros_like(latents_pre_act) | |
multik_latents.scatter_(-1, multik_indices, multik_values) | |
# Update stats_last_nonzero | |
self.stats_last_nonzero += 1 | |
self.stats_last_nonzero.scatter_(0, topk_indices.unique(), 0) | |
recons = self.decoder(latents) + self.pre_bias | |
multik_recons = self.decoder(multik_latents) + self.pre_bias | |
# AuxK | |
if self.auxk is not None: | |
# Create dead latents mask | |
dead_mask = (self.stats_last_nonzero > self.dead_steps_threshold).float() | |
# Apply mask to latents_pre_act | |
dead_latents_pre_act = latents_pre_act * dead_mask | |
# Select top-k_aux from dead latents | |
auxk_values, auxk_indices = torch.topk(dead_latents_pre_act, k=self.auxk, dim=-1) | |
auxk_values = F.relu(auxk_values) | |
else: | |
auxk_values, auxk_indices = None, None | |
return recons, { | |
"topk_indices": topk_indices, | |
"topk_values": topk_values, | |
"multik_indices": multik_indices, | |
"multik_values": multik_values, | |
"multik_recons": multik_recons, | |
"auxk_indices": auxk_indices, | |
"auxk_values": auxk_values, | |
"latents_pre_act": latents_pre_act, | |
"latents_post_act": latents, | |
} | |
def decode_sparse(self, indices, values): | |
latents = torch.zeros(self.n_dirs, device=indices.device) | |
latents.scatter_(-1, indices, values) | |
return self.decoder(latents) + self.pre_bias | |
# def decode_sparse(self, indices, values): | |
# latents = torch.zeros(1, self.n_dirs, device=indices.device, dtype=torch.float32) | |
# latents.scatter_(-1, indices.unsqueeze(0), values.unsqueeze(0)) | |
# return self.decoder(latents.squeeze(0)) + self.pre_bias | |
def print_tensor_info(self, tensor, name): | |
print(f"{name} - Shape: {tensor.shape}, Dtype: {tensor.dtype}, Device: {tensor.device}") | |
def decode_clamp(self, latents, clamp): | |
topk_values, topk_indices = torch.topk(latents, k = 64, dim=-1) | |
topk_values = F.relu(topk_values) | |
latents = torch.zeros_like(latents) | |
latents.scatter_(-1, topk_indices, topk_values) | |
# multiply latents by clamp, which is 1D but has has the same size as each latent vector | |
latents = latents * clamp | |
return self.decoder(latents) + self.pre_bias | |
def decode_at_k(self, latents, k): | |
topk_values, topk_indices = torch.topk(latents, k=k, dim=-1) | |
topk_values = F.relu(topk_values) | |
latents = torch.zeros_like(latents) | |
latents.scatter_(-1, topk_indices, topk_values) | |
return self.decoder(latents) + self.pre_bias | |
def unit_norm_decoder_(autoencoder: FastAutoencoder) -> None: | |
with torch.no_grad(): | |
autoencoder.decoder.weight.div_(autoencoder.decoder.weight.norm(dim=0, keepdim=True)) | |
def unit_norm_decoder_grad_adjustment_(autoencoder: FastAutoencoder) -> None: | |
if autoencoder.decoder.weight.grad is not None: | |
with torch.no_grad(): | |
proj = torch.sum(autoencoder.decoder.weight * autoencoder.decoder.weight.grad, dim=0, keepdim=True) | |
autoencoder.decoder.weight.grad.sub_(proj * autoencoder.decoder.weight) | |
def mse(output, target): | |
return F.mse_loss(output, target) | |
def normalized_mse(recon, xs): | |
return mse(recon, xs) / mse(xs.mean(dim=0, keepdim=True).expand_as(xs), xs) | |
def loss_fn(ae, x, recons, info, auxk_coef, multik_coef): | |
recons_loss = normalized_mse(recons, x) | |
recons_loss += multik_coef * normalized_mse(info["multik_recons"], x) | |
if ae.auxk is not None: | |
e = x - recons.detach() # reconstruction error | |
auxk_latents = torch.zeros_like(info["latents_pre_act"]) | |
auxk_latents.scatter_(-1, info["auxk_indices"], info["auxk_values"]) | |
e_hat = ae.decoder(auxk_latents) # reconstruction of error using dead latents | |
auxk_loss = normalized_mse(e_hat, e) | |
total_loss = recons_loss + auxk_coef * auxk_loss | |
else: | |
auxk_loss = torch.tensor(0.0, device=device) | |
total_loss = recons_loss | |
return total_loss, recons_loss, auxk_loss | |
def init_from_data_(ae, data_sample): | |
# set pre_bias to median of data | |
ae.pre_bias.data = torch.median(data_sample, dim=0).values | |
nn.init.xavier_uniform_(ae.decoder.weight) | |
# decoder is unit norm | |
unit_norm_decoder_(ae) | |
# encoder as transpose of decoder | |
ae.encoder.weight.data = ae.decoder.weight.t().clone() | |
nn.init.zeros_(ae.latent_bias) | |
def train(ae, train_loader, optimizer, epochs, k, auxk_coef, multik_coef, clip_grad=None, save_dir="../models", model_name=""): | |
os.makedirs(save_dir, exist_ok=True) | |
step = 0 | |
num_batches = len(train_loader) | |
for epoch in range(epochs): | |
ae.train() | |
total_loss = 0 | |
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}"): | |
optimizer.zero_grad() | |
x = batch[0].to(device) | |
recons, info = ae(x) | |
loss, recons_loss, auxk_loss = loss_fn(ae, x, recons, info, auxk_coef, multik_coef) | |
loss.backward() | |
step += 1 | |
# calculate proportion of dead latents (not fired in last num_batches = 1 epoch) | |
dead_latents_prop = (ae.stats_last_nonzero > num_batches).float().mean().item() | |
wandb.log({ | |
"total_loss": loss.item(), | |
"reconstruction_loss": recons_loss.item(), | |
"auxiliary_loss": auxk_loss.item(), | |
"dead_latents_proportion": dead_latents_prop, | |
"l0_norm": k, | |
"step": step | |
}) | |
unit_norm_decoder_grad_adjustment_(ae) | |
if clip_grad is not None: | |
torch.nn.utils.clip_grad_norm_(ae.parameters(), clip_grad) | |
optimizer.step() | |
unit_norm_decoder_(ae) | |
total_loss += loss.item() | |
avg_loss = total_loss / len(train_loader) | |
print(f"Epoch {epoch+1}, Average Loss: {avg_loss:.4f}") | |
# Delete previous model saves for this configuration | |
for old_model in glob.glob(os.path.join(save_dir, f"{model_name}_epoch_*.pth")): | |
os.remove(old_model) | |
# Save new model | |
save_path = os.path.join(save_dir, f"{model_name}_epoch_{epoch+1}.pth") | |
torch.save(ae.state_dict(), save_path) | |
print(f"Model saved to {save_path}") | |
def main(): | |
d_model = 1536 | |
n_dirs = 3072 #9216 | |
k = 64 #64 | |
auxk = k*2 #256 | |
multik = 128 | |
batch_size = 1024 | |
lr = 1e-4 | |
auxk_coef = 1/32 | |
clip_grad = 1.0 | |
multik_coef = 0 # turn it off | |
csLG = False | |
# Create model name | |
model_name = f"{k}_{n_dirs}_{auxk}_auxk" if not csLG else f"{k}_{n_dirs}_{auxk}_auxk_csLG" | |
epochs = 50 if not csLG else 137 | |
wandb.init(project="saerch", name=model_name, config={ | |
"n_dirs": n_dirs, | |
"d_model": d_model, | |
"k": k, | |
"auxk": auxk, | |
"batch_size": batch_size, | |
"lr": lr, | |
"epochs": epochs, | |
"auxk_coef": auxk_coef, | |
"multik_coef": multik_coef, | |
"clip_grad": clip_grad, | |
"device": device.type | |
}) | |
if not csLG: | |
data = np.load("../data/vector_store_astroPH/abstract_embeddings.npy") | |
print("Doing astro.ph...") | |
else: | |
data = np.load("../data/vector_store_csLG/abstract_embeddings.npy") | |
print("Doing csLG...") | |
data_tensor = torch.from_numpy(data).float() | |
# Print shape | |
print(f"Data shape: {data_tensor.shape}") | |
dataset = TensorDataset(data_tensor) | |
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
ae = FastAutoencoder(n_dirs, d_model, k, auxk, multik).to(device) | |
init_from_data_(ae, data_tensor[:10000].to(device)) | |
optimizer = optim.Adam(ae.parameters(), lr=lr) | |
train(ae, train_loader, optimizer, epochs, k, auxk_coef, multik_coef, clip_grad=clip_grad, model_name=model_name) | |
wandb.finish() | |
if __name__ == "__main__": | |
main() |