saerch.ai / topk_sae.py
charlieoneill's picture
Create topk_sae.py
63a794c verified
raw
history blame
9.68 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
import wandb
import os
import glob
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class FastAutoencoder(nn.Module):
def __init__(self, n_dirs: int, d_model: int, k: int, auxk: int, multik: int, dead_steps_threshold: int = 266):
super().__init__()
self.n_dirs = n_dirs
self.d_model = d_model
self.k = k
self.auxk = auxk
self.multik = multik
self.dead_steps_threshold = dead_steps_threshold
self.encoder = nn.Linear(d_model, n_dirs, bias=False)
self.decoder = nn.Linear(n_dirs, d_model, bias=False)
self.pre_bias = nn.Parameter(torch.zeros(d_model))
self.latent_bias = nn.Parameter(torch.zeros(n_dirs))
self.stats_last_nonzero = torch.zeros(n_dirs, dtype=torch.long, device=device)
def forward(self, x):
x = x - self.pre_bias
latents_pre_act = self.encoder(x) + self.latent_bias
# Main top-k selection
topk_values, topk_indices = torch.topk(latents_pre_act, k=self.k, dim=-1)
topk_values = F.relu(topk_values)
multik_values, multik_indices = torch.topk(latents_pre_act, k=4*self.k, dim=-1)
multik_values = F.relu(multik_values)
latents = torch.zeros_like(latents_pre_act)
latents.scatter_(-1, topk_indices, topk_values)
multik_latents = torch.zeros_like(latents_pre_act)
multik_latents.scatter_(-1, multik_indices, multik_values)
# Update stats_last_nonzero
self.stats_last_nonzero += 1
self.stats_last_nonzero.scatter_(0, topk_indices.unique(), 0)
recons = self.decoder(latents) + self.pre_bias
multik_recons = self.decoder(multik_latents) + self.pre_bias
# AuxK
if self.auxk is not None:
# Create dead latents mask
dead_mask = (self.stats_last_nonzero > self.dead_steps_threshold).float()
# Apply mask to latents_pre_act
dead_latents_pre_act = latents_pre_act * dead_mask
# Select top-k_aux from dead latents
auxk_values, auxk_indices = torch.topk(dead_latents_pre_act, k=self.auxk, dim=-1)
auxk_values = F.relu(auxk_values)
else:
auxk_values, auxk_indices = None, None
return recons, {
"topk_indices": topk_indices,
"topk_values": topk_values,
"multik_indices": multik_indices,
"multik_values": multik_values,
"multik_recons": multik_recons,
"auxk_indices": auxk_indices,
"auxk_values": auxk_values,
"latents_pre_act": latents_pre_act,
"latents_post_act": latents,
}
def decode_sparse(self, indices, values):
latents = torch.zeros(self.n_dirs, device=indices.device)
latents.scatter_(-1, indices, values)
return self.decoder(latents) + self.pre_bias
# def decode_sparse(self, indices, values):
# latents = torch.zeros(1, self.n_dirs, device=indices.device, dtype=torch.float32)
# latents.scatter_(-1, indices.unsqueeze(0), values.unsqueeze(0))
# return self.decoder(latents.squeeze(0)) + self.pre_bias
def print_tensor_info(self, tensor, name):
print(f"{name} - Shape: {tensor.shape}, Dtype: {tensor.dtype}, Device: {tensor.device}")
def decode_clamp(self, latents, clamp):
topk_values, topk_indices = torch.topk(latents, k = 64, dim=-1)
topk_values = F.relu(topk_values)
latents = torch.zeros_like(latents)
latents.scatter_(-1, topk_indices, topk_values)
# multiply latents by clamp, which is 1D but has has the same size as each latent vector
latents = latents * clamp
return self.decoder(latents) + self.pre_bias
def decode_at_k(self, latents, k):
topk_values, topk_indices = torch.topk(latents, k=k, dim=-1)
topk_values = F.relu(topk_values)
latents = torch.zeros_like(latents)
latents.scatter_(-1, topk_indices, topk_values)
return self.decoder(latents) + self.pre_bias
def unit_norm_decoder_(autoencoder: FastAutoencoder) -> None:
with torch.no_grad():
autoencoder.decoder.weight.div_(autoencoder.decoder.weight.norm(dim=0, keepdim=True))
def unit_norm_decoder_grad_adjustment_(autoencoder: FastAutoencoder) -> None:
if autoencoder.decoder.weight.grad is not None:
with torch.no_grad():
proj = torch.sum(autoencoder.decoder.weight * autoencoder.decoder.weight.grad, dim=0, keepdim=True)
autoencoder.decoder.weight.grad.sub_(proj * autoencoder.decoder.weight)
def mse(output, target):
return F.mse_loss(output, target)
def normalized_mse(recon, xs):
return mse(recon, xs) / mse(xs.mean(dim=0, keepdim=True).expand_as(xs), xs)
def loss_fn(ae, x, recons, info, auxk_coef, multik_coef):
recons_loss = normalized_mse(recons, x)
recons_loss += multik_coef * normalized_mse(info["multik_recons"], x)
if ae.auxk is not None:
e = x - recons.detach() # reconstruction error
auxk_latents = torch.zeros_like(info["latents_pre_act"])
auxk_latents.scatter_(-1, info["auxk_indices"], info["auxk_values"])
e_hat = ae.decoder(auxk_latents) # reconstruction of error using dead latents
auxk_loss = normalized_mse(e_hat, e)
total_loss = recons_loss + auxk_coef * auxk_loss
else:
auxk_loss = torch.tensor(0.0, device=device)
total_loss = recons_loss
return total_loss, recons_loss, auxk_loss
def init_from_data_(ae, data_sample):
# set pre_bias to median of data
ae.pre_bias.data = torch.median(data_sample, dim=0).values
nn.init.xavier_uniform_(ae.decoder.weight)
# decoder is unit norm
unit_norm_decoder_(ae)
# encoder as transpose of decoder
ae.encoder.weight.data = ae.decoder.weight.t().clone()
nn.init.zeros_(ae.latent_bias)
def train(ae, train_loader, optimizer, epochs, k, auxk_coef, multik_coef, clip_grad=None, save_dir="../models", model_name=""):
os.makedirs(save_dir, exist_ok=True)
step = 0
num_batches = len(train_loader)
for epoch in range(epochs):
ae.train()
total_loss = 0
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}"):
optimizer.zero_grad()
x = batch[0].to(device)
recons, info = ae(x)
loss, recons_loss, auxk_loss = loss_fn(ae, x, recons, info, auxk_coef, multik_coef)
loss.backward()
step += 1
# calculate proportion of dead latents (not fired in last num_batches = 1 epoch)
dead_latents_prop = (ae.stats_last_nonzero > num_batches).float().mean().item()
wandb.log({
"total_loss": loss.item(),
"reconstruction_loss": recons_loss.item(),
"auxiliary_loss": auxk_loss.item(),
"dead_latents_proportion": dead_latents_prop,
"l0_norm": k,
"step": step
})
unit_norm_decoder_grad_adjustment_(ae)
if clip_grad is not None:
torch.nn.utils.clip_grad_norm_(ae.parameters(), clip_grad)
optimizer.step()
unit_norm_decoder_(ae)
total_loss += loss.item()
avg_loss = total_loss / len(train_loader)
print(f"Epoch {epoch+1}, Average Loss: {avg_loss:.4f}")
# Delete previous model saves for this configuration
for old_model in glob.glob(os.path.join(save_dir, f"{model_name}_epoch_*.pth")):
os.remove(old_model)
# Save new model
save_path = os.path.join(save_dir, f"{model_name}_epoch_{epoch+1}.pth")
torch.save(ae.state_dict(), save_path)
print(f"Model saved to {save_path}")
def main():
d_model = 1536
n_dirs = 3072 #9216
k = 64 #64
auxk = k*2 #256
multik = 128
batch_size = 1024
lr = 1e-4
auxk_coef = 1/32
clip_grad = 1.0
multik_coef = 0 # turn it off
csLG = False
# Create model name
model_name = f"{k}_{n_dirs}_{auxk}_auxk" if not csLG else f"{k}_{n_dirs}_{auxk}_auxk_csLG"
epochs = 50 if not csLG else 137
wandb.init(project="saerch", name=model_name, config={
"n_dirs": n_dirs,
"d_model": d_model,
"k": k,
"auxk": auxk,
"batch_size": batch_size,
"lr": lr,
"epochs": epochs,
"auxk_coef": auxk_coef,
"multik_coef": multik_coef,
"clip_grad": clip_grad,
"device": device.type
})
if not csLG:
data = np.load("../data/vector_store_astroPH/abstract_embeddings.npy")
print("Doing astro.ph...")
else:
data = np.load("../data/vector_store_csLG/abstract_embeddings.npy")
print("Doing csLG...")
data_tensor = torch.from_numpy(data).float()
# Print shape
print(f"Data shape: {data_tensor.shape}")
dataset = TensorDataset(data_tensor)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
ae = FastAutoencoder(n_dirs, d_model, k, auxk, multik).to(device)
init_from_data_(ae, data_tensor[:10000].to(device))
optimizer = optim.Adam(ae.parameters(), lr=lr)
train(ae, train_loader, optimizer, epochs, k, auxk_coef, multik_coef, clip_grad=clip_grad, model_name=model_name)
wandb.finish()
if __name__ == "__main__":
main()