Spaces:
Running
Running
File size: 9,680 Bytes
63a794c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
import wandb
import os
import glob
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class FastAutoencoder(nn.Module):
def __init__(self, n_dirs: int, d_model: int, k: int, auxk: int, multik: int, dead_steps_threshold: int = 266):
super().__init__()
self.n_dirs = n_dirs
self.d_model = d_model
self.k = k
self.auxk = auxk
self.multik = multik
self.dead_steps_threshold = dead_steps_threshold
self.encoder = nn.Linear(d_model, n_dirs, bias=False)
self.decoder = nn.Linear(n_dirs, d_model, bias=False)
self.pre_bias = nn.Parameter(torch.zeros(d_model))
self.latent_bias = nn.Parameter(torch.zeros(n_dirs))
self.stats_last_nonzero = torch.zeros(n_dirs, dtype=torch.long, device=device)
def forward(self, x):
x = x - self.pre_bias
latents_pre_act = self.encoder(x) + self.latent_bias
# Main top-k selection
topk_values, topk_indices = torch.topk(latents_pre_act, k=self.k, dim=-1)
topk_values = F.relu(topk_values)
multik_values, multik_indices = torch.topk(latents_pre_act, k=4*self.k, dim=-1)
multik_values = F.relu(multik_values)
latents = torch.zeros_like(latents_pre_act)
latents.scatter_(-1, topk_indices, topk_values)
multik_latents = torch.zeros_like(latents_pre_act)
multik_latents.scatter_(-1, multik_indices, multik_values)
# Update stats_last_nonzero
self.stats_last_nonzero += 1
self.stats_last_nonzero.scatter_(0, topk_indices.unique(), 0)
recons = self.decoder(latents) + self.pre_bias
multik_recons = self.decoder(multik_latents) + self.pre_bias
# AuxK
if self.auxk is not None:
# Create dead latents mask
dead_mask = (self.stats_last_nonzero > self.dead_steps_threshold).float()
# Apply mask to latents_pre_act
dead_latents_pre_act = latents_pre_act * dead_mask
# Select top-k_aux from dead latents
auxk_values, auxk_indices = torch.topk(dead_latents_pre_act, k=self.auxk, dim=-1)
auxk_values = F.relu(auxk_values)
else:
auxk_values, auxk_indices = None, None
return recons, {
"topk_indices": topk_indices,
"topk_values": topk_values,
"multik_indices": multik_indices,
"multik_values": multik_values,
"multik_recons": multik_recons,
"auxk_indices": auxk_indices,
"auxk_values": auxk_values,
"latents_pre_act": latents_pre_act,
"latents_post_act": latents,
}
def decode_sparse(self, indices, values):
latents = torch.zeros(self.n_dirs, device=indices.device)
latents.scatter_(-1, indices, values)
return self.decoder(latents) + self.pre_bias
# def decode_sparse(self, indices, values):
# latents = torch.zeros(1, self.n_dirs, device=indices.device, dtype=torch.float32)
# latents.scatter_(-1, indices.unsqueeze(0), values.unsqueeze(0))
# return self.decoder(latents.squeeze(0)) + self.pre_bias
def print_tensor_info(self, tensor, name):
print(f"{name} - Shape: {tensor.shape}, Dtype: {tensor.dtype}, Device: {tensor.device}")
def decode_clamp(self, latents, clamp):
topk_values, topk_indices = torch.topk(latents, k = 64, dim=-1)
topk_values = F.relu(topk_values)
latents = torch.zeros_like(latents)
latents.scatter_(-1, topk_indices, topk_values)
# multiply latents by clamp, which is 1D but has has the same size as each latent vector
latents = latents * clamp
return self.decoder(latents) + self.pre_bias
def decode_at_k(self, latents, k):
topk_values, topk_indices = torch.topk(latents, k=k, dim=-1)
topk_values = F.relu(topk_values)
latents = torch.zeros_like(latents)
latents.scatter_(-1, topk_indices, topk_values)
return self.decoder(latents) + self.pre_bias
def unit_norm_decoder_(autoencoder: FastAutoencoder) -> None:
with torch.no_grad():
autoencoder.decoder.weight.div_(autoencoder.decoder.weight.norm(dim=0, keepdim=True))
def unit_norm_decoder_grad_adjustment_(autoencoder: FastAutoencoder) -> None:
if autoencoder.decoder.weight.grad is not None:
with torch.no_grad():
proj = torch.sum(autoencoder.decoder.weight * autoencoder.decoder.weight.grad, dim=0, keepdim=True)
autoencoder.decoder.weight.grad.sub_(proj * autoencoder.decoder.weight)
def mse(output, target):
return F.mse_loss(output, target)
def normalized_mse(recon, xs):
return mse(recon, xs) / mse(xs.mean(dim=0, keepdim=True).expand_as(xs), xs)
def loss_fn(ae, x, recons, info, auxk_coef, multik_coef):
recons_loss = normalized_mse(recons, x)
recons_loss += multik_coef * normalized_mse(info["multik_recons"], x)
if ae.auxk is not None:
e = x - recons.detach() # reconstruction error
auxk_latents = torch.zeros_like(info["latents_pre_act"])
auxk_latents.scatter_(-1, info["auxk_indices"], info["auxk_values"])
e_hat = ae.decoder(auxk_latents) # reconstruction of error using dead latents
auxk_loss = normalized_mse(e_hat, e)
total_loss = recons_loss + auxk_coef * auxk_loss
else:
auxk_loss = torch.tensor(0.0, device=device)
total_loss = recons_loss
return total_loss, recons_loss, auxk_loss
def init_from_data_(ae, data_sample):
# set pre_bias to median of data
ae.pre_bias.data = torch.median(data_sample, dim=0).values
nn.init.xavier_uniform_(ae.decoder.weight)
# decoder is unit norm
unit_norm_decoder_(ae)
# encoder as transpose of decoder
ae.encoder.weight.data = ae.decoder.weight.t().clone()
nn.init.zeros_(ae.latent_bias)
def train(ae, train_loader, optimizer, epochs, k, auxk_coef, multik_coef, clip_grad=None, save_dir="../models", model_name=""):
os.makedirs(save_dir, exist_ok=True)
step = 0
num_batches = len(train_loader)
for epoch in range(epochs):
ae.train()
total_loss = 0
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}"):
optimizer.zero_grad()
x = batch[0].to(device)
recons, info = ae(x)
loss, recons_loss, auxk_loss = loss_fn(ae, x, recons, info, auxk_coef, multik_coef)
loss.backward()
step += 1
# calculate proportion of dead latents (not fired in last num_batches = 1 epoch)
dead_latents_prop = (ae.stats_last_nonzero > num_batches).float().mean().item()
wandb.log({
"total_loss": loss.item(),
"reconstruction_loss": recons_loss.item(),
"auxiliary_loss": auxk_loss.item(),
"dead_latents_proportion": dead_latents_prop,
"l0_norm": k,
"step": step
})
unit_norm_decoder_grad_adjustment_(ae)
if clip_grad is not None:
torch.nn.utils.clip_grad_norm_(ae.parameters(), clip_grad)
optimizer.step()
unit_norm_decoder_(ae)
total_loss += loss.item()
avg_loss = total_loss / len(train_loader)
print(f"Epoch {epoch+1}, Average Loss: {avg_loss:.4f}")
# Delete previous model saves for this configuration
for old_model in glob.glob(os.path.join(save_dir, f"{model_name}_epoch_*.pth")):
os.remove(old_model)
# Save new model
save_path = os.path.join(save_dir, f"{model_name}_epoch_{epoch+1}.pth")
torch.save(ae.state_dict(), save_path)
print(f"Model saved to {save_path}")
def main():
d_model = 1536
n_dirs = 3072 #9216
k = 64 #64
auxk = k*2 #256
multik = 128
batch_size = 1024
lr = 1e-4
auxk_coef = 1/32
clip_grad = 1.0
multik_coef = 0 # turn it off
csLG = False
# Create model name
model_name = f"{k}_{n_dirs}_{auxk}_auxk" if not csLG else f"{k}_{n_dirs}_{auxk}_auxk_csLG"
epochs = 50 if not csLG else 137
wandb.init(project="saerch", name=model_name, config={
"n_dirs": n_dirs,
"d_model": d_model,
"k": k,
"auxk": auxk,
"batch_size": batch_size,
"lr": lr,
"epochs": epochs,
"auxk_coef": auxk_coef,
"multik_coef": multik_coef,
"clip_grad": clip_grad,
"device": device.type
})
if not csLG:
data = np.load("../data/vector_store_astroPH/abstract_embeddings.npy")
print("Doing astro.ph...")
else:
data = np.load("../data/vector_store_csLG/abstract_embeddings.npy")
print("Doing csLG...")
data_tensor = torch.from_numpy(data).float()
# Print shape
print(f"Data shape: {data_tensor.shape}")
dataset = TensorDataset(data_tensor)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
ae = FastAutoencoder(n_dirs, d_model, k, auxk, multik).to(device)
init_from_data_(ae, data_tensor[:10000].to(device))
optimizer = optim.Adam(ae.parameters(), lr=lr)
train(ae, train_loader, optimizer, epochs, k, auxk_coef, multik_coef, clip_grad=clip_grad, model_name=model_name)
wandb.finish()
if __name__ == "__main__":
main() |