Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T") | |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T") | |
def generate_text(prompt, temperature, max_length, min_length): | |
# Tokenize the prompt | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
# Generate text using the model | |
output = model.generate(input_ids, max_length=max_length, min_length=min_length, temperature=temperature, num_return_sequences=1) | |
# Decode the generated output | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
def chatbot_app(prompt, temperature, max_length, min_length): | |
generated_text = generate_text(prompt, temperature, max_length, min_length) | |
return generated_text | |
iface = gr.Interface( | |
fn=chatbot_app, | |
inputs=["text", gr.Number(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"), | |
gr.Number(minimum=10, maximum=2048, value=10, label="Max Length"), | |
gr.Number(minimum=1, maximum=2048, value=1, label="Min Length")], | |
outputs="text", | |
live=False, | |
) | |
iface.launch() | |