File size: 1,269 Bytes
d3e5d4a
f55178e
4dce766
d3e5d4a
 
 
 
f55178e
 
 
4dce766
f55178e
 
4dce766
f55178e
 
 
 
4dce766
f55178e
 
 
4dce766
f55178e
 
 
 
 
 
 
 
5f5a729
f55178e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")

def generate_text(prompt, temperature, max_length, min_length):
    # Tokenize the prompt
    input_ids = tokenizer.encode(prompt, return_tensors="pt")

    # Generate text using the model
    output = model.generate(input_ids, max_length=max_length, min_length=min_length, temperature=temperature, num_return_sequences=1)

    # Decode the generated output
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    
    return generated_text

def chatbot_app(prompt, temperature, max_length, min_length):
    generated_text = generate_text(prompt, temperature, max_length, min_length)
    return generated_text

iface = gr.Interface(
    fn=chatbot_app,
    inputs=["text", gr.Number(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
            gr.Number(minimum=10, maximum=2048, value=10, label="Max Length"),
            gr.Number(minimum=1, maximum=2048, value=1, label="Min Length")],
    outputs="text",
    live=False,
)

iface.launch()