charanhu commited on
Commit
d3e5d4a
·
1 Parent(s): fba2a73

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load model and tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
6
+ model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
7
+
8
+ def generate_text(prompt, max_length=100, min_length=20, temperature=1.0):
9
+ # Tokenize the prompt
10
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
11
+
12
+ # Generate text
13
+ output = model.generate(
14
+ input_ids,
15
+ max_length=max_length,
16
+ min_length=min_length,
17
+ num_return_sequences=1,
18
+ temperature=temperature
19
+ )
20
+
21
+ # Decode the generated output
22
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
23
+
24
+ return generated_text
25
+
26
+ # Create the Gradio interface
27
+ iface = gr.Interface(
28
+ generate_text,
29
+ [
30
+ gr.Textbox(lines=5, label="Prompt"),
31
+ gr.Slider(0, 2048, 100, label="Max Length"),
32
+ gr.Slider(0, 2048, 20, label="Min Length"),
33
+ gr.Slider(0.1, 2.0, 1.0, label="Temperature"),
34
+ ],
35
+ "textbox",
36
+ title="TinyLlama Text Generator",
37
+ live=True, # Enable live updates as the user types
38
+ )
39
+
40
+ # Launch the Gradio app
41
+ iface.launch()