TinyLlama-1B / app.py
charanhu's picture
Create app.py
d3e5d4a
raw
history blame
1.25 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
def generate_text(prompt, max_length=100, min_length=20, temperature=1.0):
# Tokenize the prompt
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate text
output = model.generate(
input_ids,
max_length=max_length,
min_length=min_length,
num_return_sequences=1,
temperature=temperature
)
# Decode the generated output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Create the Gradio interface
iface = gr.Interface(
generate_text,
[
gr.Textbox(lines=5, label="Prompt"),
gr.Slider(0, 2048, 100, label="Max Length"),
gr.Slider(0, 2048, 20, label="Min Length"),
gr.Slider(0.1, 2.0, 1.0, label="Temperature"),
],
"textbox",
title="TinyLlama Text Generator",
live=True, # Enable live updates as the user types
)
# Launch the Gradio app
iface.launch()