Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T") | |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T") | |
def generate_text(prompt, max_length=100, min_length=20, temperature=1.0): | |
# Tokenize the prompt | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
# Generate text | |
output = model.generate( | |
input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_return_sequences=1, | |
temperature=temperature | |
) | |
# Decode the generated output | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Create the Gradio interface | |
iface = gr.Interface( | |
generate_text, | |
[ | |
gr.Textbox(lines=5, label="Prompt"), | |
gr.Slider(0, 2048, 100, label="Max Length"), | |
gr.Slider(0, 2048, 20, label="Min Length"), | |
gr.Slider(0.1, 2.0, 1.0, label="Temperature"), | |
], | |
"textbox", | |
title="TinyLlama Text Generator", | |
live=True, # Enable live updates as the user types | |
) | |
# Launch the Gradio app | |
iface.launch() |