Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit.runtime.uploaded_file_manager import UploadedFile | |
import pandas as pd | |
import numpy as np | |
from pose_format import Pose | |
from pose_format.pose_visualizer import PoseVisualizer | |
from pathlib import Path | |
from pyzstd import decompress | |
from PIL import Image | |
import cv2 | |
import mediapipe as mp | |
mp_holistic = mp.solutions.holistic | |
FACEMESH_CONTOURS_POINTS = [ | |
str(p) | |
for p in sorted( | |
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup]) | |
) | |
] | |
def pose_normalization_info(pose_header): | |
if pose_header.components[0].name == "POSE_LANDMARKS": | |
return pose_header.normalization_info( | |
p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"), | |
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"), | |
) | |
if pose_header.components[0].name == "BODY_135": | |
return pose_header.normalization_info( | |
p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder") | |
) | |
if pose_header.components[0].name == "pose_keypoints_2d": | |
return pose_header.normalization_info( | |
p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder") | |
) | |
def pose_hide_legs(pose): | |
if pose.header.components[0].name == "POSE_LANDMARKS": | |
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"] | |
# pylint: disable=protected-access | |
points = [ | |
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n) | |
for n in point_names | |
for side in ["LEFT", "RIGHT"] | |
] | |
pose.body.confidence[:, :, points] = 0 | |
pose.body.data[:, :, points, :] = 0 | |
return pose | |
else: | |
raise ValueError("Unknown pose header schema for hiding legs") | |
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)}) | |
def load_pose(uploaded_file: UploadedFile) -> Pose: | |
# with input_path.open("rb") as f_in: | |
if uploaded_file.name.endswith(".zst"): | |
return Pose.read(decompress(uploaded_file.read())) | |
else: | |
return Pose.read(uploaded_file.read()) | |
def get_pose_frames(pose: Pose, transparency: bool = False): | |
v = PoseVisualizer(pose) | |
frames = [frame_data for frame_data in v.draw()] | |
if transparency: | |
cv_code = v.cv2.COLOR_BGR2RGBA | |
else: | |
cv_code = v.cv2.COLOR_BGR2RGB | |
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames] | |
return frames, images | |
def get_pose_gif(pose: Pose, step: int = 1, fps: int = None): | |
if fps is not None: | |
pose.body.fps = fps | |
v = PoseVisualizer(pose) | |
frames = [frame_data for frame_data in v.draw()] | |
frames = frames[::step] | |
return v.save_gif(None, frames=frames) | |
st.write("# Pose-format explorer") | |
st.write( | |
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)" | |
) | |
st.write( | |
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named." | |
) | |
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"]) | |
if uploaded_file is not None: | |
with st.spinner(f"Loading {uploaded_file.name}"): | |
pose = load_pose(uploaded_file) | |
frames, images = get_pose_frames(pose=pose) | |
st.success("Done loading!") | |
st.write("### File Info") | |
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"): | |
st.write(pose.header) | |
st.write(f"### Selection") | |
component_selection = st.radio( | |
"How to select components?", options=["manual", "signclip"] | |
) | |
if component_selection == "manual": | |
chosen_component_names = st.multiselect( | |
"Select components to visualize", options=[c.name for c in pose.header.components] | |
) | |
if chosen_component_names: | |
pose = pose.get_components(chosen_component_names) | |
elif component_selection == "signclip": | |
st.write("Selected landmarks used for SignCLIP.") | |
pose = pose.get_components( | |
["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"] | |
) | |
pose = pose_hide_legs(pose) | |
# Filter button logic | |
if st.button("Filter Components/Points"): | |
st.write("### Filtered .pose file") | |
with st.expander("Show header"): | |
st.write(pose.header) | |
with st.expander("Show body"): | |
st.write(pose.body) | |
pose_file_out = Path(uploaded_file.name).with_suffix(".pose") | |
with pose_file_out.open("wb") as f: | |
pose.write(f) | |
with pose_file_out.open("rb") as f: | |
st.download_button("Download Filtered Pose", f, file_name=pose_file_out.name) | |
# Visualization button logic | |
if st.button("Visualize"): | |
st.write("### Visualization") | |
step = st.select_slider("Step value to select every nth image", list(range(1, len(frames))), value=1) | |
fps = st.slider("FPS for visualization", min_value=1.0, max_value=pose.body.fps, value=pose.body.fps) | |
st.image(get_pose_gif(pose=pose, step=step, fps=fps)) | |
# st.write(pose.body.data.shape) | |
# st.write(visualize_pose(pose=pose)) # bunch of ndarrays | |
# st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]) | |
# for i, image in enumerate(images[::n]): | |
# print(f"i={i}") | |
# st.image(image=image, width=width) | |