Spaces:
Sleeping
Sleeping
File size: 5,582 Bytes
9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 867f539 9f4c52d 247b8a5 867f539 247b8a5 9f4c52d 6e290b7 9f4c52d 6e290b7 9f4c52d 867f539 6e290b7 9f4c52d 6e290b7 867f539 9f4c52d 6e290b7 9f4c52d 6e290b7 867f539 6e290b7 867f539 9f4c52d 867f539 6e290b7 4d840a0 6e290b7 4d840a0 6e290b7 4d840a0 6e290b7 4d840a0 9f4c52d 6e290b7 4d840a0 9f4c52d 6e290b7 4d840a0 9f4c52d 4d840a0 9f4c52d 4d840a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import pandas as pd
import numpy as np
from pose_format import Pose
from pose_format.pose_visualizer import PoseVisualizer
from pathlib import Path
from pyzstd import decompress
from PIL import Image
import cv2
import mediapipe as mp
mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
str(p)
for p in sorted(
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
)
]
def pose_normalization_info(pose_header):
if pose_header.components[0].name == "POSE_LANDMARKS":
return pose_header.normalization_info(
p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"),
)
if pose_header.components[0].name == "BODY_135":
return pose_header.normalization_info(
p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder")
)
if pose_header.components[0].name == "pose_keypoints_2d":
return pose_header.normalization_info(
p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder")
)
def pose_hide_legs(pose):
if pose.header.components[0].name == "POSE_LANDMARKS":
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
# pylint: disable=protected-access
points = [
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
for n in point_names
for side in ["LEFT", "RIGHT"]
]
pose.body.confidence[:, :, points] = 0
pose.body.data[:, :, points, :] = 0
return pose
else:
raise ValueError("Unknown pose header schema for hiding legs")
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:
# with input_path.open("rb") as f_in:
if uploaded_file.name.endswith(".zst"):
return Pose.read(decompress(uploaded_file.read()))
else:
return Pose.read(uploaded_file.read())
@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
if transparency:
cv_code = v.cv2.COLOR_BGR2RGBA
else:
cv_code = v.cv2.COLOR_BGR2RGB
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
return frames, images
def get_pose_gif(pose: Pose, step: int = 1, fps: int = None):
if fps is not None:
pose.body.fps = fps
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
frames = frames[::step]
return v.save_gif(None, frames=frames)
st.write("# Pose-format explorer")
st.write(
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])
if uploaded_file is not None:
with st.spinner(f"Loading {uploaded_file.name}"):
pose = load_pose(uploaded_file)
frames, images = get_pose_frames(pose=pose)
st.success("Done loading!")
st.write("### File Info")
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
st.write(pose.header)
st.write(f"### Selection")
component_selection = st.radio(
"How to select components?", options=["manual", "signclip"]
)
if component_selection == "manual":
chosen_component_names = st.multiselect(
"Select components to visualize", options=[c.name for c in pose.header.components]
)
if chosen_component_names:
pose = pose.get_components(chosen_component_names)
elif component_selection == "signclip":
st.write("Selected landmarks used for SignCLIP.")
pose = pose.get_components(
["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"]
)
pose = pose_hide_legs(pose)
# Filter button logic
if st.button("Filter Components/Points"):
st.write("### Filtered .pose file")
with st.expander("Show header"):
st.write(pose.header)
with st.expander("Show body"):
st.write(pose.body)
pose_file_out = Path(uploaded_file.name).with_suffix(".pose")
with pose_file_out.open("wb") as f:
pose.write(f)
with pose_file_out.open("rb") as f:
st.download_button("Download Filtered Pose", f, file_name=pose_file_out.name)
# Visualization button logic
if st.button("Visualize"):
st.write("### Visualization")
step = st.select_slider("Step value to select every nth image", list(range(1, len(frames))), value=1)
fps = st.slider("FPS for visualization", min_value=1.0, max_value=pose.body.fps, value=pose.body.fps)
st.image(get_pose_gif(pose=pose, step=step, fps=fps))
# st.write(pose.body.data.shape)
# st.write(visualize_pose(pose=pose)) # bunch of ndarrays
# st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames])
# for i, image in enumerate(images[::n]):
# print(f"i={i}")
# st.image(image=image, width=width)
|