File size: 5,088 Bytes
075b69c 7a85f5b 075b69c f99f042 075b69c 91717a7 075b69c 91717a7 075b69c 208d638 075b69c 208d638 075b69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
from PIL import Image, ImageOps, ImageChops
import io
import fitz # PyMuPDF
from docx import Document
from rembg import remove
import gradio as gr
from hezar.models import Model
from ultralytics import YOLO
import json
# ایجاد دایرکتوریهای لازم
os.makedirs("static", exist_ok=True)
os.makedirs("output_images", exist_ok=True)
def trim_whitespace(image):
gray_image = ImageOps.grayscale(image)
inverted_image = ImageChops.invert(gray_image)
bbox = inverted_image.getbbox()
trimmed_image = image.crop(bbox)
return trimmed_image
def convert_pdf_to_images(pdf_path, zoom=2):
pdf_document = fitz.open(pdf_path)
images = []
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
matrix = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=matrix)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
trimmed_image = trim_whitespace(image)
images.append(trimmed_image)
return images
def convert_docx_to_jpeg(docx_bytes):
document = Document(BytesIO(docx_bytes))
images = []
for rel in document.part.rels.values():
if "image" in rel.target_ref:
image_stream = rel.target_part.blob
image = Image.open(BytesIO(image_stream))
jpeg_image = BytesIO()
image.convert('RGB').save(jpeg_image, format="JPEG")
jpeg_image.seek(0)
images.append(Image.open(jpeg_image))
return images
def remove_background_from_image(image):
return remove(image)
def process_file(input_file):
file_extension = os.path.splitext(input_file.name)[1].lower()
images = []
if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
image = Image.open(input_file)
output_image = remove_background_from_image(image)
images.append(output_image)
elif file_extension == '.pdf':
images = convert_pdf_to_images(input_file.name)
images = [remove_background_from_image(image) for image in images]
elif file_extension in ['.docx', '.doc']:
images = convert_docx_to_jpeg(input_file.name)
images = [remove_background_from_image(image) for image in images]
else:
return "File format not supported."
input_folder = 'output_images'
for i, img in enumerate(images):
if img.mode == 'RGBA':
img = img.convert('RGB')
img.save(os.path.join(input_folder, f'image_{i}.jpg'))
return images
def run_detection_and_ocr():
# Load models
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
yolo_model = YOLO("best_300_D_check.pt")
input_folder = 'output_images'
yolo_model.predict(input_folder, save=True, conf=0.5, save_crop=True)
output_folder = 'runs/detect/predict' # Remove leading slash if needed
crop_folder = os.path.join(output_folder, 'crops')
results = []
for filename in os.listdir(input_folder):
if filename.endswith('.JPEG') or filename.endswith('.jpg'):
image_path = os.path.join(input_folder, filename)
# Check if crop_folder exists
if os.path.exists(crop_folder):
crops = []
for crop_label in os.listdir(crop_folder):
crop_label_folder = os.path.join(crop_folder, crop_label)
if os.path.isdir(crop_label_folder):
for crop_filename in os.listdir(crop_label_folder):
crop_image_path = os.path.join(crop_label_folder, crop_filename)
text_prediction = predict_text(ocr_model, crop_image_path)
crops.append({
'crop_image_path': crop_image_path,
'text_prediction': text_prediction,
'class_label': crop_label
})
results.append({
'image': filename,
'crops': crops
})
output_json_path = 'output.json'
with open(output_json_path, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=4)
return output_json_path
def predict_text(model, image_path):
try:
image = Image.open(image_path)
image = image.resize((320, 320))
output = model.predict(image)
if isinstance(output, list):
return ' '.join([item['text'] for item in output])
return str(output)
except FileNotFoundError:
return "N/A"
def gradio_interface(input_file):
process_file(input_file)
json_output = run_detection_and_ocr()
with open(json_output, 'r', encoding='utf-8') as f:
return json.load(f)
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.File(label="Upload Word, PDF, or Image"),
outputs=gr.JSON(label="JSON Output"),
title="Document to JSON Converter with Background Removal"
)
if __name__ == "__main__":
iface.launch() |