File size: 5,088 Bytes
075b69c
7a85f5b
075b69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99f042
 
075b69c
 
 
 
 
 
91717a7
075b69c
 
91717a7
075b69c
208d638
 
 
075b69c
 
 
 
 
208d638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os

from PIL import Image, ImageOps, ImageChops
import io
import fitz  # PyMuPDF
from docx import Document
from rembg import remove
import gradio as gr
from hezar.models import Model
from ultralytics import YOLO
import json

# ایجاد دایرکتوری‌های لازم
os.makedirs("static", exist_ok=True)
os.makedirs("output_images", exist_ok=True)

def trim_whitespace(image):
    gray_image = ImageOps.grayscale(image)
    inverted_image = ImageChops.invert(gray_image)
    bbox = inverted_image.getbbox()
    trimmed_image = image.crop(bbox)
    return trimmed_image

def convert_pdf_to_images(pdf_path, zoom=2):
    pdf_document = fitz.open(pdf_path)
    images = []
    for page_num in range(len(pdf_document)):
        page = pdf_document.load_page(page_num)
        matrix = fitz.Matrix(zoom, zoom)
        pix = page.get_pixmap(matrix=matrix)
        image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        trimmed_image = trim_whitespace(image)
        images.append(trimmed_image)
    return images

def convert_docx_to_jpeg(docx_bytes):
    document = Document(BytesIO(docx_bytes))
    images = []
    for rel in document.part.rels.values():
        if "image" in rel.target_ref:
            image_stream = rel.target_part.blob
            image = Image.open(BytesIO(image_stream))
            jpeg_image = BytesIO()
            image.convert('RGB').save(jpeg_image, format="JPEG")
            jpeg_image.seek(0)
            images.append(Image.open(jpeg_image))
    return images

def remove_background_from_image(image):
    return remove(image)

def process_file(input_file):
    file_extension = os.path.splitext(input_file.name)[1].lower()
    images = []

    if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
        image = Image.open(input_file)
        output_image = remove_background_from_image(image)
        images.append(output_image)
    elif file_extension == '.pdf':
        images = convert_pdf_to_images(input_file.name)
        images = [remove_background_from_image(image) for image in images]
    elif file_extension in ['.docx', '.doc']:
        images = convert_docx_to_jpeg(input_file.name)
        images = [remove_background_from_image(image) for image in images]
    else:
        return "File format not supported."

    input_folder = 'output_images'
    for i, img in enumerate(images):
        if img.mode == 'RGBA':
            img = img.convert('RGB')
        img.save(os.path.join(input_folder, f'image_{i}.jpg'))

    return images
def run_detection_and_ocr():
    # Load models
    ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
    yolo_model = YOLO("best_300_D_check.pt")
    
    input_folder = 'output_images'
    yolo_model.predict(input_folder, save=True, conf=0.5, save_crop=True)
    
    output_folder = 'runs/detect/predict'  # Remove leading slash if needed
    crop_folder = os.path.join(output_folder, 'crops')
    
    results = []
    
    for filename in os.listdir(input_folder):
        if filename.endswith('.JPEG') or filename.endswith('.jpg'):
            image_path = os.path.join(input_folder, filename)
            
            # Check if crop_folder exists
            if os.path.exists(crop_folder):
                crops = []
                for crop_label in os.listdir(crop_folder):
                    crop_label_folder = os.path.join(crop_folder, crop_label)
                    if os.path.isdir(crop_label_folder):
                        for crop_filename in os.listdir(crop_label_folder):
                            crop_image_path = os.path.join(crop_label_folder, crop_filename)
                            text_prediction = predict_text(ocr_model, crop_image_path)
                            crops.append({
                                'crop_image_path': crop_image_path,
                                'text_prediction': text_prediction,
                                'class_label': crop_label
                            })
                results.append({
                    'image': filename,
                    'crops': crops
                })

    output_json_path = 'output.json'
    with open(output_json_path, 'w', encoding='utf-8') as f:
        json.dump(results, f, ensure_ascii=False, indent=4)
    
    return output_json_path

def predict_text(model, image_path):
    try:
        image = Image.open(image_path)
        image = image.resize((320, 320))
        output = model.predict(image)
        if isinstance(output, list):
            return ' '.join([item['text'] for item in output])
        return str(output)
    except FileNotFoundError:
        return "N/A"

def gradio_interface(input_file):
    process_file(input_file)
    json_output = run_detection_and_ocr()
    with open(json_output, 'r', encoding='utf-8') as f:
        return json.load(f)

iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.File(label="Upload Word, PDF, or Image"),
    outputs=gr.JSON(label="JSON Output"),
    title="Document to JSON Converter with Background Removal"
)

if __name__ == "__main__":
    iface.launch()