Update app.py
Browse files
app.py
CHANGED
@@ -72,7 +72,6 @@ def process_file(input_file):
|
|
72 |
img.save(os.path.join(input_folder, f'image_{i}.jpg'))
|
73 |
|
74 |
return images
|
75 |
-
|
76 |
def run_detection_and_ocr():
|
77 |
# Load models
|
78 |
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
|
@@ -81,29 +80,33 @@ def run_detection_and_ocr():
|
|
81 |
input_folder = 'output_images'
|
82 |
yolo_model.predict(input_folder, save=True, imgsz=320, conf=0.5, save_crop=True)
|
83 |
|
84 |
-
output_folder = '
|
|
|
|
|
85 |
results = []
|
86 |
|
87 |
for filename in os.listdir(input_folder):
|
88 |
if filename.endswith('.JPEG') or filename.endswith('.jpg'):
|
89 |
image_path = os.path.join(input_folder, filename)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
|
108 |
output_json_path = 'output.json'
|
109 |
with open(output_json_path, 'w', encoding='utf-8') as f:
|
|
|
72 |
img.save(os.path.join(input_folder, f'image_{i}.jpg'))
|
73 |
|
74 |
return images
|
|
|
75 |
def run_detection_and_ocr():
|
76 |
# Load models
|
77 |
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
|
|
|
80 |
input_folder = 'output_images'
|
81 |
yolo_model.predict(input_folder, save=True, imgsz=320, conf=0.5, save_crop=True)
|
82 |
|
83 |
+
output_folder = 'runs/detect/predict' # Remove leading slash if needed
|
84 |
+
crop_folder = os.path.join(output_folder, 'crops')
|
85 |
+
|
86 |
results = []
|
87 |
|
88 |
for filename in os.listdir(input_folder):
|
89 |
if filename.endswith('.JPEG') or filename.endswith('.jpg'):
|
90 |
image_path = os.path.join(input_folder, filename)
|
91 |
+
|
92 |
+
# Check if crop_folder exists
|
93 |
+
if os.path.exists(crop_folder):
|
94 |
+
crops = []
|
95 |
+
for crop_label in os.listdir(crop_folder):
|
96 |
+
crop_label_folder = os.path.join(crop_folder, crop_label)
|
97 |
+
if os.path.isdir(crop_label_folder):
|
98 |
+
for crop_filename in os.listdir(crop_label_folder):
|
99 |
+
crop_image_path = os.path.join(crop_label_folder, crop_filename)
|
100 |
+
text_prediction = predict_text(ocr_model, crop_image_path)
|
101 |
+
crops.append({
|
102 |
+
'crop_image_path': crop_image_path,
|
103 |
+
'text_prediction': text_prediction,
|
104 |
+
'class_label': crop_label
|
105 |
+
})
|
106 |
+
results.append({
|
107 |
+
'image': filename,
|
108 |
+
'crops': crops
|
109 |
+
})
|
110 |
|
111 |
output_json_path = 'output.json'
|
112 |
with open(output_json_path, 'w', encoding='utf-8') as f:
|