File size: 1,344 Bytes
75de0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a680a4b0-f69e-4645-9790-2f70f2bcf48f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import scipy.signal\n",
    "def wiener_filter(audio):\n",
    "    \n",
    "    '''\n",
    "    The Wiener filter is designed to minimize the impact of noise by applying an adaptive filtering process. \n",
    "    It tries to estimate the original, clean signal by taking into account both the noisy signal and the statistical properties of the noise. \n",
    "    The Wiener filter is particularly useful when dealing with stationary noise (constant background noise, like white noise).\n",
    "    '''\n",
    "    return scipy.signal.wiener(audio)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4eaa3f1-770f-4260-8a84-0d7afe5ea3b4",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}