Spaces:
Sleeping
Sleeping
File size: 1,344 Bytes
75de0d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "a680a4b0-f69e-4645-9790-2f70f2bcf48f",
"metadata": {},
"outputs": [],
"source": [
"import scipy.signal\n",
"def wiener_filter(audio):\n",
" \n",
" '''\n",
" The Wiener filter is designed to minimize the impact of noise by applying an adaptive filtering process. \n",
" It tries to estimate the original, clean signal by taking into account both the noisy signal and the statistical properties of the noise. \n",
" The Wiener filter is particularly useful when dealing with stationary noise (constant background noise, like white noise).\n",
" '''\n",
" return scipy.signal.wiener(audio)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4eaa3f1-770f-4260-8a84-0d7afe5ea3b4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|