cdactvm commited on
Commit
75de0d3
·
verified ·
1 Parent(s): 6c98b22

Upload 3 files

Browse files
Files changed (3) hide show
  1. highPassFilter.ipynb +72 -0
  2. waveletDenoise.ipynb +50 -0
  3. wienerFilter.ipynb +51 -0
highPassFilter.ipynb ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "b2d45592-5695-40ec-ad90-7d03275337a6",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "# import scipy.signal\n",
11
+ "\n",
12
+ "# def high_pass_filter(audio, sr, cutoff=200, order=3):\n",
13
+ "# \"\"\"\n",
14
+ "# Applies a high-pass filter to an audio signal.\n",
15
+ "\n",
16
+ "# Parameters:\n",
17
+ "# audio (numpy array): The input audio signal.\n",
18
+ "# sr (int): The sample rate of the audio signal.\n",
19
+ "# cutoff (float): The cutoff frequency in Hz. Default is 100 Hz.\n",
20
+ "# order (int): The order of the filter. Default is 5.\n",
21
+ " \n",
22
+ "# Returns:\n",
23
+ "# numpy array: The filtered audio signal.\n",
24
+ "# \"\"\"\n",
25
+ "# # Design the high-pass filter using a Butterworth filter design\n",
26
+ "# sos = scipy.signal.butter(order, cutoff, btype='highpass', fs=sr, output='sos')\n",
27
+ " \n",
28
+ "# # Apply the filter using sosfilt (second-order sections filter)\n",
29
+ "# filtered_audio = scipy.signal.sosfilt(sos, audio)\n",
30
+ " \n",
31
+ "# return filtered_audio"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": null,
37
+ "id": "8a1efa78-61d4-4545-b50a-080161bb6aa5",
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "def high_pass_filter(audio, sr, cutoff=300):\n",
42
+ " # Design a Butterworth high-pass filter\n",
43
+ " nyquist = 0.5 * sr\n",
44
+ " normal_cutoff = cutoff / nyquist\n",
45
+ " b, a = butter(1, normal_cutoff, btype='high', analog=False)\n",
46
+ " filtered_audio = lfilter(b, a, audio)\n",
47
+ " return filtered_audio"
48
+ ]
49
+ }
50
+ ],
51
+ "metadata": {
52
+ "kernelspec": {
53
+ "display_name": "Python 3 (ipykernel)",
54
+ "language": "python",
55
+ "name": "python3"
56
+ },
57
+ "language_info": {
58
+ "codemirror_mode": {
59
+ "name": "ipython",
60
+ "version": 3
61
+ },
62
+ "file_extension": ".py",
63
+ "mimetype": "text/x-python",
64
+ "name": "python",
65
+ "nbconvert_exporter": "python",
66
+ "pygments_lexer": "ipython3",
67
+ "version": "3.11.7"
68
+ }
69
+ },
70
+ "nbformat": 4,
71
+ "nbformat_minor": 5
72
+ }
waveletDenoise.ipynb ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "5d909ed5-71b2-4586-96e1-f7820a8912ca",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "# Function to apply wavelet denoising\n",
11
+ "def wavelet_denoise(audio, wavelet='db1', level=1):\n",
12
+ " coeffs = pywt.wavedec(audio, wavelet, mode='per')\n",
13
+ " # Thresholding detail coefficients\n",
14
+ " sigma = np.median(np.abs(coeffs[-level])) / 0.6745\n",
15
+ " uthresh = sigma * np.sqrt(2 * np.log(len(audio)))\n",
16
+ " coeffs[1:] = [pywt.threshold(i, value=uthresh, mode='soft') for i in coeffs[1:]]\n",
17
+ " return pywt.waverec(coeffs, wavelet, mode='per')\n"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "id": "02d29b97-fe10-4cd9-a176-0c7bf153a3f9",
24
+ "metadata": {},
25
+ "outputs": [],
26
+ "source": []
27
+ }
28
+ ],
29
+ "metadata": {
30
+ "kernelspec": {
31
+ "display_name": "Python 3 (ipykernel)",
32
+ "language": "python",
33
+ "name": "python3"
34
+ },
35
+ "language_info": {
36
+ "codemirror_mode": {
37
+ "name": "ipython",
38
+ "version": 3
39
+ },
40
+ "file_extension": ".py",
41
+ "mimetype": "text/x-python",
42
+ "name": "python",
43
+ "nbconvert_exporter": "python",
44
+ "pygments_lexer": "ipython3",
45
+ "version": "3.11.7"
46
+ }
47
+ },
48
+ "nbformat": 4,
49
+ "nbformat_minor": 5
50
+ }
wienerFilter.ipynb ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "a680a4b0-f69e-4645-9790-2f70f2bcf48f",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import scipy.signal\n",
11
+ "def wiener_filter(audio):\n",
12
+ " \n",
13
+ " '''\n",
14
+ " The Wiener filter is designed to minimize the impact of noise by applying an adaptive filtering process. \n",
15
+ " It tries to estimate the original, clean signal by taking into account both the noisy signal and the statistical properties of the noise. \n",
16
+ " The Wiener filter is particularly useful when dealing with stationary noise (constant background noise, like white noise).\n",
17
+ " '''\n",
18
+ " return scipy.signal.wiener(audio)"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "b4eaa3f1-770f-4260-8a84-0d7afe5ea3b4",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": []
28
+ }
29
+ ],
30
+ "metadata": {
31
+ "kernelspec": {
32
+ "display_name": "Python 3 (ipykernel)",
33
+ "language": "python",
34
+ "name": "python3"
35
+ },
36
+ "language_info": {
37
+ "codemirror_mode": {
38
+ "name": "ipython",
39
+ "version": 3
40
+ },
41
+ "file_extension": ".py",
42
+ "mimetype": "text/x-python",
43
+ "name": "python",
44
+ "nbconvert_exporter": "python",
45
+ "pygments_lexer": "ipython3",
46
+ "version": "3.11.7"
47
+ }
48
+ },
49
+ "nbformat": 4,
50
+ "nbformat_minor": 5
51
+ }