File size: 1,282 Bytes
75de0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5d909ed5-71b2-4586-96e1-f7820a8912ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to apply wavelet denoising\n",
    "def wavelet_denoise(audio, wavelet='db1', level=1):\n",
    "    coeffs = pywt.wavedec(audio, wavelet, mode='per')\n",
    "    # Thresholding detail coefficients\n",
    "    sigma = np.median(np.abs(coeffs[-level])) / 0.6745\n",
    "    uthresh = sigma * np.sqrt(2 * np.log(len(audio)))\n",
    "    coeffs[1:] = [pywt.threshold(i, value=uthresh, mode='soft') for i in coeffs[1:]]\n",
    "    return pywt.waverec(coeffs, wavelet, mode='per')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02d29b97-fe10-4cd9-a176-0c7bf153a3f9",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}