Spaces:
Sleeping
Sleeping
File size: 1,282 Bytes
75de0d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "5d909ed5-71b2-4586-96e1-f7820a8912ca",
"metadata": {},
"outputs": [],
"source": [
"# Function to apply wavelet denoising\n",
"def wavelet_denoise(audio, wavelet='db1', level=1):\n",
" coeffs = pywt.wavedec(audio, wavelet, mode='per')\n",
" # Thresholding detail coefficients\n",
" sigma = np.median(np.abs(coeffs[-level])) / 0.6745\n",
" uthresh = sigma * np.sqrt(2 * np.log(len(audio)))\n",
" coeffs[1:] = [pywt.threshold(i, value=uthresh, mode='soft') for i in coeffs[1:]]\n",
" return pywt.waverec(coeffs, wavelet, mode='per')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02d29b97-fe10-4cd9-a176-0c7bf153a3f9",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|