ccm's picture
Update main.py
a1040ce verified
raw
history blame
5.73 kB
import gradio # for the interface
import transformers # to load an LLM
import sentence_transformers # to load an embedding model
import faiss # to create an index
import numpy # to work with vectors
import pandas # to work with pandas
import json # to work with JSON
import datasets # to load the dataset
import spaces # for GPU
import threading # for threading
import time # for better HCI
# Constants
GREETING = "Hi there! I'm an AI agent that uses a [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about research by the Design Research Collective. And the best part is that I always cite my ssources! What can I tell you about today?"
EMBEDDING_MODEL_NAME = "allenai-specter"
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
# Load the dataset and convert to pandas
full_data = datasets.load_dataset("ccm/publications")["train"].to_pandas()
# Filter out any publications without an abstract
filter = [
'"abstract": null' in json.dumps(bibdict)
for bibdict in full_data["bib_dict"].values
]
data = full_data[~pandas.Series(filter)]
data.reset_index(inplace=True)
# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0)
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)
# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)
# Define the search function
def search(query: str, k: int) -> tuple[str]:
query = numpy.expand_dims(model.encode(query), axis=0)
faiss.normalize_L2(query)
D, I = index.search(query, k)
top_five = data.loc[I[0]]
search_results = "You are an AI assistant who delights in helping people" \
+ "learn about research from the Design Research Collective. Here are" \
+ "several abstracts from really cool, and really relevant, papers:\n\n"
references = "\n\n## References\n\n"
for i in range(k):
search_results += top_five["bib_dict"].values[i]["abstract"] + "\n"
references += str(i+1) + ". " + ", ".join([author.split(" ")[-1] for author in top_five["bib_dict"].values[i]["author"].split(" and ")]) + ". (" + str(int(top_five["bib_dict"].values[i]["pub_year"])) + "). [" + top_five["bib_dict"].values[i]["title"] + "]" \
+ "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] + ").\n"
search_results += "\nIf these abstract aren't relevant to the followign query, please say that there is not much research in that area. Response to the following query from the perspective of the provided abstracts only:"
return search_results, references
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
streamer = transformers.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
torch_dtype="auto",
device_map="auto"
)
def preprocess(message: str) -> tuple[str]:
"""Applies a preprocessing step to the user's message before the LLM receives it"""
block_search_results, formatted_search_results = search(message, 5)
return block_search_results + message, formatted_search_results
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
"""Applies a postprocessing step to the LLM's response before the user receives it"""
return response + bypass_from_preprocessing
@spaces.GPU
def predict(message: str, history: list[str]) -> str:
"""This function is responsible for crafting a response"""
# Apply preprocessing
message, bypass = preprocess(message)
# This is some handling that is applied to the history variable to put it in a good format
if isinstance(history, list):
if len(history) > 0:
history = history[-1]
history_transformer_format = [
{"role": "assistant" if idx&1 else "user", "content": msg}
for idx, msg in enumerate(history)
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=512
)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
time.sleep(0.05)
yield partial_message
yield partial_message + bypass
# Create and run the gradio interface
CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; }
"""
gradio.ChatInterface(
predict,
examples=[
"Tell me about new research at the intersection of additive manufacturing and machine learning",
"What is a physics-informed neural network and what can it be used for?",
"What can agent-based models do about climate change?"
],
chatbot = gradio.Chatbot(
show_label=False,
show_copy_button=True,
value=[["", GREETING]]
),
retry_btn = None,
undo_btn = None,
clear_btn = None,
theme = "monochrome",
cache_examples = True,
fill_height = True,
css=CSS
).launch(debug=True)