File size: 5,732 Bytes
d7a54c3
 
 
 
 
 
 
 
2ce9b97
41b63d8
 
c6cda2e
2494e4f
2f0848d
7e37bf7
 
2494e4f
a64dda4
 
5e710c8
a64dda4
 
 
 
 
6a4b3a2
 
c6cda2e
a64dda4
d7a54c3
bc256ab
936fa72
 
d7a54c3
936fa72
 
bc256ab
 
7e37bf7
c6cda2e
a64dda4
d7a54c3
bc256ab
 
936fa72
c6cda2e
d7a54c3
 
 
08f0630
d7a54c3
 
c6cda2e
 
d7a54c3
fdd08a1
5852967
d7a54c3
01db4ca
d7a54c3
 
 
 
 
7e37bf7
30d4d88
 
7e37bf7
30d4d88
 
d7a54c3
 
 
 
 
 
 
 
 
 
 
8a48a1f
d7a54c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d4d88
 
 
 
 
 
648f18a
30d4d88
 
 
 
 
 
 
 
 
 
 
 
 
aa33df0
30d4d88
 
3c845c1
d7a54c3
 
 
e301da1
 
 
 
 
ebc5453
 
 
 
 
 
 
06c4e96
 
 
a1040ce
06c4e96
ebc5453
 
7c0523c
 
 
 
a1040ce
ebc5453
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio  # for the interface
import transformers  # to load an LLM
import sentence_transformers  # to load an embedding model
import faiss  # to create an index
import numpy  # to work with vectors
import pandas  # to work with pandas
import json  # to work with JSON
import datasets  # to load the dataset
import spaces  # for GPU
import threading  # for threading
import time   # for better HCI

# Constants
GREETING = "Hi there! I'm an AI agent that uses a [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about research by the Design Research Collective. And the best part is that I always cite my ssources! What can I tell you about today?"
EMBEDDING_MODEL_NAME = "allenai-specter"
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"

# Load the dataset and convert to pandas
full_data = datasets.load_dataset("ccm/publications")["train"].to_pandas()

# Filter out any publications without an abstract
filter = [
    '"abstract": null' in json.dumps(bibdict)
    for bibdict in full_data["bib_dict"].values
]
data = full_data[~pandas.Series(filter)]
data.reset_index(inplace=True)

# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0)
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)

# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)

# Define the search function
def search(query: str, k: int) -> tuple[str]:
    query = numpy.expand_dims(model.encode(query), axis=0)
    faiss.normalize_L2(query)
    D, I = index.search(query, k)
    top_five = data.loc[I[0]]

    search_results = "You are an AI assistant who delights in helping people" \
        + "learn about research from the Design Research Collective. Here are" \
        + "several abstracts from really cool, and really relevant, papers:\n\n"

    references = "\n\n## References\n\n"

    for i in range(k):
        search_results += top_five["bib_dict"].values[i]["abstract"] + "\n"
        references += str(i+1) + ". " + ", ".join([author.split(" ")[-1] for author in top_five["bib_dict"].values[i]["author"].split(" and ")]) + ". (" + str(int(top_five["bib_dict"].values[i]["pub_year"])) +  "). [" + top_five["bib_dict"].values[i]["title"] + "]" \
            + "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] + ").\n"

    search_results += "\nIf these abstract aren't relevant to the followign query, please say that there is not much research in that area. Response to the following query from the perspective of the provided abstracts only:"

    return search_results, references


# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
streamer = transformers.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
    LLM_MODEL_NAME,
    torch_dtype="auto",
    device_map="auto"
)

def preprocess(message: str) -> tuple[str]:
    """Applies a preprocessing step to the user's message before the LLM receives it"""
    block_search_results, formatted_search_results = search(message, 5)
    return block_search_results + message, formatted_search_results

def postprocess(response: str, bypass_from_preprocessing: str) -> str:
    """Applies a postprocessing step to the LLM's response before the user receives it"""
    return response + bypass_from_preprocessing

@spaces.GPU
def predict(message: str, history: list[str]) -> str:
    """This function is responsible for crafting a response"""

    # Apply preprocessing
    message, bypass = preprocess(message)

    # This is some handling that is applied to the history variable to put it in a good format
    if isinstance(history, list):
        if len(history) > 0:
            history = history[-1]
    history_transformer_format = [
        {"role": "assistant" if idx&1 else "user", "content": msg}
        for idx, msg in enumerate(history)
    ] + [{"role": "user", "content": message}]

    # Stream a response from pipe
    text = tokenizer.apply_chat_template(
        history_transformer_format,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")

    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=512
    )
    t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
    t.start()

    partial_message = ""
    for new_token in streamer:
        if new_token != '<':
            partial_message += new_token
            time.sleep(0.05)
            yield partial_message

    yield partial_message + bypass


# Create and run the gradio interface
CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; }
"""
gradio.ChatInterface(
    predict, 
    examples=[
        "Tell me about new research at the intersection of additive manufacturing and machine learning",
        "What is a physics-informed neural network and what can it be used for?",
        "What can agent-based models do about climate change?"
    ],
    chatbot = gradio.Chatbot(    
        show_label=False,
        show_copy_button=True,
        value=[["", GREETING]]
    ),
    retry_btn = None,
    undo_btn = None,
    clear_btn = None,
    theme = "monochrome",
    cache_examples = True,
    fill_height = True,
    css=CSS
).launch(debug=True)