ccm commited on
Commit
08f0630
·
verified ·
1 Parent(s): 7c0523c

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +3 -3
main.py CHANGED
@@ -42,7 +42,7 @@ def search(query: str, k: int) -> tuple[str]:
42
 
43
  search_results = "You are an AI assistant who delights in helping people" \
44
  + "learn about research from the Design Research Collective. Here are" \
45
- + "several really cool abstracts:\n\n"
46
 
47
  references = "\n\n## References\n\n"
48
 
@@ -51,13 +51,13 @@ def search(query: str, k: int) -> tuple[str]:
51
  references += str(i+1) + ". " + ", ".join([author.split(" ")[-1] for author in top_five["bib_dict"].values[i]["author"].split(" and ")]) + ". (" + str(int(top_five["bib_dict"].values[i]["pub_year"])) + "). [" + top_five["bib_dict"].values[i]["title"] + "]" \
52
  + "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] + ").\n"
53
 
54
- search_results += "\nSummarize the above abstracts as you respond to the following query:"
55
 
56
  return search_results, references
57
 
58
 
59
  # Create an LLM pipeline that we can send queries to
60
- model_name = "Qwen/Qwen2-1.5B-Instruct"
61
  tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
62
  streamer = transformers.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
63
  chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
 
42
 
43
  search_results = "You are an AI assistant who delights in helping people" \
44
  + "learn about research from the Design Research Collective. Here are" \
45
+ + "several abstracts from really cool, and really relevant, papers:\n\n"
46
 
47
  references = "\n\n## References\n\n"
48
 
 
51
  references += str(i+1) + ". " + ", ".join([author.split(" ")[-1] for author in top_five["bib_dict"].values[i]["author"].split(" and ")]) + ". (" + str(int(top_five["bib_dict"].values[i]["pub_year"])) + "). [" + top_five["bib_dict"].values[i]["title"] + "]" \
52
  + "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] + ").\n"
53
 
54
+ search_results += "\nResponse to the following query from the perspective of tehse examples only:"
55
 
56
  return search_results, references
57
 
58
 
59
  # Create an LLM pipeline that we can send queries to
60
+ model_name = "Qwen/Qwen2-7B-Instruct"
61
  tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
62
  streamer = transformers.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
63
  chatmodel = transformers.AutoModelForCausalLM.from_pretrained(