Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,255 Bytes
6a4b3a2 c6cda2e 6a4b3a2 c6cda2e 5e710c8 ea7e7ec 6a4b3a2 c6cda2e ff52d8e c6cda2e 6a4b3a2 c6cda2e ea7e7ec 8acbaa0 c6cda2e eb9eac3 8acbaa0 36a1e14 ca1fc80 36a1e14 c6cda2e 6a4b3a2 c6cda2e ff52d8e 9cf274d c6cda2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import json
import gradio
import datasets
import numpy
import pandas
import sentence_transformers
import faiss
model = sentence_transformers.SentenceTransformer('allenai-specter')
full_data = datasets.load_dataset("ccm/publications")['train'].to_pandas()
filter = ["\"abstract\": null" in json.dumps(bibdict) for bibdict in full_data['bib_dict'].values]
data = full_data[~pandas.Series(filter)]
data.reset_index(inplace=True)
dimensionality = len(data['embedding'][0])
index = faiss.IndexFlatL2(dimensionality)
vectors = numpy.stack(data['embedding'].to_list(), axis=0)
index.add(vectors)
def search(query, k):
query = numpy.expand_dims(model.encode(query), axis=0)
_, I = index.search(query, k)
top_five = data.loc[I[0]]
search_results = ""
for i in range(k):
search_results += '### ' + top_five["bib_dict"].values[i]["title"] + '\n'
search_results += top_five["bib_dict"].values[i]["citation"] + "\n\n"
if top_five["pub_url"].values[i] is not None:
search_results += "[Full Text](" + top_five["pub_url"].values[i] + ") "
if top_five["citedby_url"].values[i] is not None:
search_results += "[Cited By](https://scholarl.google.com" + top_five["citedby_url"].values[i] + ") "
if top_five["url_related_articles"].values[i] is not None:
search_results += "[Related Articles](https://scholarl.google.com" + top_five["url_related_articles"].values[i] + ") "
search_results += "\n\n" + str(top_five["num_citations"].values[i]) + " citations\n"
search_results += "\n```\n"
search_results += json.dumps(top_five["bibtex"].values[i], indent=4).replace('\\n', '\n').replace('\\t', '\t').strip("\"")
search_results += "```\n"
return search_results
with gradio.Blocks() as demo:
with gradio.Group():
query = gradio.Textbox(placeholder="Enter search terms...", show_label=False, lines=1, max_lines=1)
with gradio.Accordion("Settings", open=False):
k = gradio.Number(5.0, label="Number of results", precision=0)
results = gradio.Markdown()
query.change(fn=search, inputs=[query, k], outputs=results)
k.change(fn=search, inputs=[query, k], outputs=results)
demo.launch(debug=True) |