Spaces:
Running
on
Zero
Running
on
Zero
Update main.py
Browse files
main.py
CHANGED
@@ -20,8 +20,7 @@ vectors = numpy.stack(data['embedding'].to_list(), axis=0)
|
|
20 |
|
21 |
index.add(vectors)
|
22 |
|
23 |
-
def search(query):
|
24 |
-
k=5
|
25 |
query = numpy.expand_dims(model.encode(query), axis=0)
|
26 |
_, I = top_five = index.search(query, k)
|
27 |
top_five = data.loc[I[0]]
|
@@ -30,16 +29,18 @@ def search(query):
|
|
30 |
for i in range(k):
|
31 |
search_results += str(i+1) + ". "
|
32 |
search_results += '"' + top_five["bibtex"].values[i]["title"] + '" '
|
33 |
-
search_results +=
|
34 |
if top_five["pub_url"].values[i] is not None:
|
35 |
-
search_results += " [
|
36 |
search_results += "\n"
|
37 |
return search_results
|
38 |
|
39 |
with gradio.Blocks() as demo:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
demo.launch(debug=True)
|
|
|
20 |
|
21 |
index.add(vectors)
|
22 |
|
23 |
+
def search(query, k):
|
|
|
24 |
query = numpy.expand_dims(model.encode(query), axis=0)
|
25 |
_, I = top_five = index.search(query, k)
|
26 |
top_five = data.loc[I[0]]
|
|
|
29 |
for i in range(k):
|
30 |
search_results += str(i+1) + ". "
|
31 |
search_results += '"' + top_five["bibtex"].values[i]["title"] + '" '
|
32 |
+
search_results += top_five["bibtex"].values[i]["citation"]
|
33 |
if top_five["pub_url"].values[i] is not None:
|
34 |
+
search_results += " [Paper](" + top_five["pub_url"].values[i] + ")"
|
35 |
search_results += "\n"
|
36 |
return search_results
|
37 |
|
38 |
with gradio.Blocks() as demo:
|
39 |
+
with gradio.Group():
|
40 |
+
query = gradio.Textbox(placeholder="Enter search terms...", show_label=False, lines=1, max_lines=1)
|
41 |
+
with gradio.Accordion("Settings", open=False):
|
42 |
+
k = gradio.Number(5.0, label="Number of results", precision=0)
|
43 |
+
results = gradio.Markdown()
|
44 |
+
query.change(fn=search, inputs=[query, k], outputs=results)
|
45 |
|
46 |
demo.launch(debug=True)
|