Img3D-UTPL / app.py
cavargas10's picture
Prueba generar Textura
44fcbfd verified
raw
history blame
9.93 kB
import os
import shutil
import tempfile
import time
from os import path
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from safetensors.torch import load_file
from torchvision.transforms import v2
from tqdm import tqdm
from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses, get_zero123plus_input_cameras)
from src.utils.infer_util import (remove_background, resize_foreground)
from src.utils.mesh_util import save_glb, save_obj, save_texmap
from src.utils.train_util import instantiate_from_config
# Inicializa un tensor en CUDA y verifica el dispositivo.
zero = torch.Tensor([0]).cuda()
print(zero.device) # Verifica que el dispositivo sea CUDA.
print(zero.device) # Verifica nuevamente que el dispositivo sea CUDA.
# Funci贸n para encontrar el path de CUDA.
def find_cuda():
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
nvcc_path = shutil.which('nvcc')
if nvcc_path:
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
# Funci贸n para obtener las c谩maras de renderizado.
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
# Verifica si la imagen de entrada es nula.
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected!")
# Preprocesa la imagen de entrada y opcionalmente elimina el fondo.
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 1)
return input_image
# Genera vistas m煤ltiples de la imagen de entrada.
@spaces.GPU(duration=20)
def generate_mvs(input_image, sample_steps, sample_seed):
seed_everything(sample_seed)
print(zero.device) # Verifica que el dispositivo sea CUDA.
z123_image = pipeline(input_image, num_inference_steps=sample_steps).images[0]
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image)
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
# Convierte im谩genes en modelos 3D y genera texturas.
@spaces.GPU
def make3d(images):
print(zero.device) # Verifica que el dispositivo sea CUDA.
global model
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, use_renderer=False)
model = model.eval()
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
texmap_fpath = os.path.join(mesh_dirname, f"{mesh_basename}_tex.png")
with torch.no_grad():
planes = model.forward_planes(images, input_cameras)
mesh_out = model.extract_mesh(planes, use_texture_map=True, **infer_config)
vertices, faces, vertex_colors, texture_map = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, texture_map, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, texture_map, mesh_fpath)
save_texmap(texture_map, texmap_fpath)
print(f"Mesh and texture saved to {mesh_fpath} and {texmap_fpath}")
return mesh_fpath, mesh_glb_fpath, texmap_fpath
# Procesa la imagen generada a partir de un prompt de texto.
@spaces.GPU
def process_image(num_images, prompt):
print(zero.device) # Verifica que el dispositivo sea CUDA.
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
return pipe(
prompt=[prompt]*num_images,
generator=torch.Generator().manual_seed(123),
num_inference_steps=1,
guidance_scale=0.,
height=int(512),
width=int(512),
timesteps=[800]
).images
# Configuraci贸n inicial del entorno CUDA y carga de configuraci贸n del modelo.
cuda_path = find_cuda()
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = config_name.startswith('instant-mesh')
device = torch.device('cuda')
# Carga del modelo de difusi贸n.
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = hf_hub_download(
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# Carga del modelo de reconstrucci贸n.
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
print('Carga Completa!')
# Interfaz de usuario usando Gradio.
with gr.Blocks() as demo:
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Imagen de Entrada",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(
label="Imagen sin Fondo",
image_mode="RGBA",
type="pil",
interactive=False
)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Quitar Fondo", value=True)
sample_seed = gr.Number(
value=42, label="Valor de la semilla", precision=0)
sample_steps = gr.Slider(
label="Pasos de muestreo", minimum=30, maximum=75, value=75, step=5)
with gr.Row():
submit = gr.Button(
"Generar", elem_id="generate", variant="primary")
with gr.Column():
with gr.Row():
with gr.Column():
mv_show_images = gr.Image(
label="Generar Multi-vistas",
type="pil",
width=379,
interactive=False
)
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="(Formato OBJ)",
interactive=False,
)
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="(Formato GLB)",
interactive=False,
)
with gr.Tab("Textura"):
output_texture = gr.Image(
label="Textura Generada",
type="pil",
interactive=False
)
mv_images = gr.State()
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background],
outputs=[processed_image],
).success(
fn=generate_mvs,
inputs=[processed_image, sample_steps, sample_seed],
outputs=[mv_images, mv_show_images]
).success(
fn=make3d,
inputs=[mv_images],
outputs=[output_model_obj, output_model_glb, output_texture]
)
demo.launch()