File size: 9,925 Bytes
9ac1400
 
 
 
 
 
89cca7d
9ac1400
 
89cca7d
 
9ac1400
 
 
 
 
 
 
 
 
 
a6809ac
9ac1400
44fcbfd
9ac1400
 
a6809ac
1da6495
a6809ac
 
3457f75
a6809ac
9ac1400
 
 
 
 
 
 
 
 
 
 
 
a6809ac
9ac1400
 
 
 
 
 
 
a6809ac
9ac1400
 
 
 
a6809ac
9ac1400
 
 
 
a6809ac
9ac1400
 
 
 
 
70b0c25
9ac1400
 
 
a6809ac
70b0c25
9ac1400
 
1da6495
a6809ac
1da6495
a6809ac
9ac1400
 
 
a6809ac
 
9ac1400
 
 
89cca7d
44fcbfd
89cca7d
9ac1400
1da6495
a6809ac
1da6495
9ac1400
 
 
 
 
 
 
 
 
a6809ac
 
9ac1400
 
a6809ac
9ac1400
a6809ac
9ac1400
 
 
 
44fcbfd
9ac1400
 
 
44fcbfd
9ac1400
44fcbfd
9ac1400
 
44fcbfd
 
 
9ac1400
44fcbfd
9ac1400
44fcbfd
9ac1400
a6809ac
9ac1400
 
1da6495
a6809ac
1da6495
9ac1400
 
 
 
 
 
 
 
 
 
 
 
a6809ac
9ac1400
 
 
 
 
 
 
 
 
 
a6809ac
9ac1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6809ac
9ac1400
 
 
 
 
a6809ac
9ac1400
 
 
 
61b7436
9ac1400
a6809ac
9ac1400
 
 
 
 
6c5b5bd
9ac1400
 
 
 
 
 
6c5b5bd
9ac1400
 
 
 
 
 
 
61b7436
9ac1400
61b7436
9ac1400
61b7436
9ac1400
 
 
61b7436
9ac1400
 
 
 
 
61b7436
9ac1400
 
 
 
 
 
 
 
61b7436
9ac1400
 
 
 
61b7436
9ac1400
 
44fcbfd
 
 
 
 
 
9ac1400
 
 
 
 
 
 
 
 
 
 
 
 
 
44fcbfd
9ac1400
89cca7d
a6809ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import shutil
import tempfile
import time
from os import path

import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from safetensors.torch import load_file
from torchvision.transforms import v2
from tqdm import tqdm

from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses, get_zero123plus_input_cameras)
from src.utils.infer_util import (remove_background, resize_foreground)
from src.utils.mesh_util import save_glb, save_obj, save_texmap
from src.utils.train_util import instantiate_from_config

# Inicializa un tensor en CUDA y verifica el dispositivo.
zero = torch.Tensor([0]).cuda()
print(zero.device) # Verifica que el dispositivo sea CUDA.
print(zero.device) # Verifica nuevamente que el dispositivo sea CUDA.

# Funci贸n para encontrar el path de CUDA.
def find_cuda():
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    nvcc_path = shutil.which('nvcc')
    if nvcc_path:
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

# Funci贸n para obtener las c谩maras de renderizado.
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras

# Verifica si la imagen de entrada es nula.
def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image selected!")

# Preprocesa la imagen de entrada y opcionalmente elimina el fondo.
def preprocess(input_image, do_remove_background):
    rembg_session = rembg.new_session() if do_remove_background else None

    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 1)

    return input_image

# Genera vistas m煤ltiples de la imagen de entrada.
@spaces.GPU(duration=20)
def generate_mvs(input_image, sample_steps, sample_seed):
    seed_everything(sample_seed)
    
    print(zero.device) # Verifica que el dispositivo sea CUDA.
    
    z123_image = pipeline(input_image, num_inference_steps=sample_steps).images[0]

    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)
    show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())

    return z123_image, show_image

# Convierte im谩genes en modelos 3D y genera texturas.
@spaces.GPU
def make3d(images):
    
    print(zero.device) # Verifica que el dispositivo sea CUDA.
    
    global model
    if IS_FLEXICUBES:
        model.init_flexicubes_geometry(device, use_renderer=False)
    model = model.eval()

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)

    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=".obj", delete=False).name
    print(mesh_fpath)
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
    texmap_fpath = os.path.join(mesh_dirname, f"{mesh_basename}_tex.png")

    with torch.no_grad():
        planes = model.forward_planes(images, input_cameras)
        mesh_out = model.extract_mesh(planes, use_texture_map=True, **infer_config)

        vertices, faces, vertex_colors, texture_map = mesh_out
        vertices = vertices[:, [1, 2, 0]]

        save_glb(vertices, faces, vertex_colors, texture_map, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, texture_map, mesh_fpath)
        save_texmap(texture_map, texmap_fpath)

        print(f"Mesh and texture saved to {mesh_fpath} and {texmap_fpath}")

    return mesh_fpath, mesh_glb_fpath, texmap_fpath

# Procesa la imagen generada a partir de un prompt de texto.
@spaces.GPU
def process_image(num_images, prompt):
    
    print(zero.device) # Verifica que el dispositivo sea CUDA.
    
    global pipe
    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
        return pipe(
            prompt=[prompt]*num_images,
            generator=torch.Generator().manual_seed(123),
            num_inference_steps=1,
            guidance_scale=0.,
            height=int(512),
            width=int(512),
            timesteps=[800]
        ).images

# Configuraci贸n inicial del entorno CUDA y carga de configuraci贸n del modelo.
cuda_path = find_cuda()
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = config_name.startswith('instant-mesh')
device = torch.device('cuda')

# Carga del modelo de difusi贸n.
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2",
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)

unet_ckpt_path = hf_hub_download(
    repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# Carga del modelo de reconstrucci贸n.
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(
    repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)

print('Carga Completa!')

# Interfaz de usuario usando Gradio.
with gr.Blocks() as demo:
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Imagen de Entrada",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(
                    label="Imagen sin Fondo",
                    image_mode="RGBA",
                    type="pil",
                    interactive=False
                )
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Quitar Fondo", value=True)
                    sample_seed = gr.Number(
                        value=42, label="Valor de la semilla", precision=0)
                    sample_steps = gr.Slider(
                        label="Pasos de muestreo", minimum=30, maximum=75, value=75, step=5)

            with gr.Row():
                submit = gr.Button(
                    "Generar", elem_id="generate", variant="primary")

        with gr.Column():
            with gr.Row():
                with gr.Column():
                    mv_show_images = gr.Image(
                        label="Generar Multi-vistas",
                        type="pil",
                        width=379,
                        interactive=False
                    )

            with gr.Row():
                with gr.Tab("OBJ"):
                    output_model_obj = gr.Model3D(
                        label="(Formato OBJ)",
                        interactive=False,
                    )
                with gr.Tab("GLB"):
                    output_model_glb = gr.Model3D(
                        label="(Formato GLB)",
                        interactive=False,
                    )
                with gr.Tab("Textura"):
                    output_texture = gr.Image(
                        label="Textura Generada",
                        type="pil",
                        interactive=False
                    )

    mv_images = gr.State()

    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background],
        outputs=[processed_image],
    ).success(
        fn=generate_mvs,
        inputs=[processed_image, sample_steps, sample_seed],
        outputs=[mv_images, mv_show_images]
    ).success(
        fn=make3d,
        inputs=[mv_images],
        outputs=[output_model_obj, output_model_glb, output_texture]
    )

demo.launch()