Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import BartForConditionalGeneration, BartTokenizer | |
| # initialize model + tok variables | |
| model = None | |
| tok = None | |
| # pass in Strings of model choice and input text for context | |
| def genQuestion(model_choice, context): | |
| if model_choice=="interview-question-remake": | |
| model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake") | |
| tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake") | |
| elif model_choice=="interview-length-tagged": | |
| model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged") | |
| tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged") | |
| elif model_choice=="reverse-interview-question": | |
| model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question") | |
| tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question") | |
| inputs = tok(context, return_tensors="pt") | |
| output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2) | |
| final_output = '' | |
| for i in range(4): | |
| final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n" | |
| return final_output | |
| iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], outputs="text") | |
| iface.launch() | |