import gradio as gr import torch from transformers import BartForConditionalGeneration, BartTokenizer # initialize model + tok variables model = None tok = None # pass in Strings of model choice and input text for context def genQuestion(model_choice, context): if model_choice=="interview-question-remake": model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake") tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake") elif model_choice=="interview-length-tagged": model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged") tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged") elif model_choice=="reverse-interview-question": model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question") tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question") inputs = tok(context, return_tensors="pt") output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2) final_output = '' for i in range(4): final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n" return final_output iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], outputs="text") iface.launch()