Spaces:
Runtime error
Runtime error
File size: 1,634 Bytes
d3c3cdf a9c4623 d3c3cdf e7eb773 a01a63e a9c4623 a01a63e e7eb773 a01a63e d3c3cdf 93e8a0e 092a071 b53e63b d3c3cdf b53e63b 99c08ee b53e63b a01a63e d3c3cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import torch
from transformers import BartForConditionalGeneration, BartTokenizer
<<<<<<< HEAD
# initialize model + tok variables
model = None
tok = None
# pass in Strings of model choice and input text for context
=======
model = None
tok = None
>>>>>>> ajs
def genQuestion(model_choice, context):
if model_choice=="interview-question-remake":
model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
elif model_choice=="interview-length-tagged":
model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
elif model_choice=="reverse-interview-question":
model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
inputs = tok(context, return_tensors="pt")
output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
final_output = ''
for i in range(4):
final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
return final_output
iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], outputs="text")
iface.launch()
|