ajs2440 commited on
Commit
a01a63e
·
1 Parent(s): 092a071
Files changed (1) hide show
  1. app.py +16 -5
app.py CHANGED
@@ -2,11 +2,22 @@ import gradio as gr
2
  import torch
3
  from transformers import BartForConditionalGeneration, BartTokenizer
4
 
 
 
 
5
 
6
- model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
7
- tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
 
 
 
 
 
 
 
 
 
8
 
9
- def genQuestion(context):
10
  inputs = tok(context, return_tensors="pt")
11
  output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
12
  final_output = ''
@@ -15,6 +26,6 @@ def genQuestion(context):
15
  final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
16
 
17
  return final_output
18
-
19
- iface = gr.Interface(fn=genQuestion, inputs="text", outputs="text")
20
  iface.launch()
 
2
  import torch
3
  from transformers import BartForConditionalGeneration, BartTokenizer
4
 
5
+ # initialize model + tok variables
6
+ model = None
7
+ tok = None
8
 
9
+ # pass in Strings of model choice and input text for context
10
+ def genQuestion(model_choice, context):
11
+ if model_choice=="interview-question-remake":
12
+ model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
13
+ tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
14
+ elif model_choice=="interview-length-tagged":
15
+ model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
16
+ tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
17
+ elif model_choice=="reverse-interview-question":
18
+ model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
19
+ tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
20
 
 
21
  inputs = tok(context, return_tensors="pt")
22
  output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
23
  final_output = ''
 
26
  final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
27
 
28
  return final_output
29
+
30
+ iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], outputs="text")
31
  iface.launch()