File size: 2,042 Bytes
d3c3cdf
a9c4623
d3c3cdf
 
a01a63e
 
 
a9c4623
b1f712d
 
 
 
 
 
 
 
 
 
a01a63e
 
b1f712d
a01a63e
 
 
b1f712d
a01a63e
 
 
b1f712d
a01a63e
 
 
b1f712d
d3c3cdf
93e8a0e
092a071
b53e63b
d3c3cdf
b53e63b
99c08ee
b53e63b
 
a01a63e
b1f712d
d3c3cdf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import torch
from transformers import BartForConditionalGeneration, BartTokenizer

# initialize model + tok variables
model = None
tok = None

# Examples for each models
examples = [
    ["interview-question-remake", ""],
    ["interview-length-tagged",""],
    ["reverse-interview-question", ""]
]

# Descriptions for each models


# pass in Strings of model choice and input text for context
def genQuestion(model_choice, context):
    global description
    if model_choice=="interview-question-remake":
        model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
        tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
        description = "Interview question remake is a model that..."
    elif model_choice=="interview-length-tagged":
        model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
        tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
        description = "Interview question tagged is a model that..."
    elif model_choice=="reverse-interview-question":
        model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
        tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
        description = "Reverse interview question  is a model that..."

    inputs = tok(context, return_tensors="pt")
    output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
    final_output = ''

    for i in range(4):
        final_output +=  [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"

    return final_output

iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], examples=examples, description=description, outputs="text")
iface.launch()